OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 3 — Jan. 20, 2005
  • pp: 423–433

Optical detection of rapidly moving objects in space

William Priedhorsky and Jeffrey J. Bloch  »View Author Affiliations


Applied Optics, Vol. 44, Issue 3, pp. 423-433 (2005)
http://dx.doi.org/10.1364/AO.44.000423


View Full Text Article

Enhanced HTML    Acrobat PDF (1859 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare the sensitivity of photon-counting and charged-coupled-device (CCD) imagers for rapidly moving objects. Our test case involves the detection of small objects in space, seen against a diffuse zodiacal light background, as observed from a space platform. We contrast photon-counting detectors, with excellent time resolution and negligible readout noise, against CCDs with a significantly larger quantum efficiency. For fast moving objects and small fields of view, the photon-counting detectors are able to detect significantly smaller targets, with the added benefit of providing angle–angle–time metric information in addition to high-time-resolution light curves. For larger fields of view and slower moving objects, the CCDs are more sensitive. These results may motivate the further development of microchannel-plate photon-counting systems and amplified CCDs for detecting and tracking space objects.

© 2005 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.1520) Detectors : CCD, charge-coupled device
(040.3780) Detectors : Low light level
(040.5250) Detectors : Photomultipliers
(350.1260) Other areas of optics : Astronomical optics
(350.6090) Other areas of optics : Space optics

History
Original Manuscript: May 17, 2004
Revised Manuscript: September 21, 2004
Manuscript Accepted: October 2, 2004
Published: January 20, 2005

Citation
William Priedhorsky and Jeffrey J. Bloch, "Optical detection of rapidly moving objects in space," Appl. Opt. 44, 423-433 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-3-423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Kervin, J. L. Africano, eds., AMOS 2003 Technical Conference, see http://www.maui.afmc.af.mil .
  2. J. J. Szymanski, P. C. Blain, J. J. Bloch, C. M. Brislawn, S. P. Brumby, M. M. Cafferty, M. E. Dunham, J. R. Frigo, M. Gokhale, N. R. Harvey, G. Kenyon, W. H. Kim, D. D. Lavenier, K. P. McCabe, M. Mitchell, K. R. Moore, S. J. Perkins, R. B. Porter, S. Robinson, A. Salazar, J. T. Theiler, A. C. Young, “Advanced processing for high-bandwidth sensor systems,” in Imaging Spectrometry VI, M. R. Descour, S. S. Shen, eds., Proc. SPIE4132, 83–90 (2000). [CrossRef]
  3. T. Malzbender, “Fourier volume rendering,” ACM Trans. Graphics, 12, 233–250 (1993). [CrossRef]
  4. L. Viola, A. Kanitsar, M. E. Gröller, “GPU-based frequency domain volume rendering,” in Proceedings of Spring Conference of Computer Graphics 2004 (Association for Computing Machinery, New York, 2004).
  5. C. Ho, W. C. Priedhorsky, M. Baron, “Detecting small debris using a ground-based photon-counting detector,” in Space Debris Detection and Mitigation,A. F. Allahdadi, ed., Proc. SPIE1951, 67–75 (1993). [CrossRef]
  6. D. D. S. Deng, H. ElGindy, “High-speed parameterisable Hough transform using reconfigurable hardware,” in Proceedings, Pan-Sydney Area Workshop on Visual Information Processing, D. D. Feng, J. Jin, P. Eades, H. Yan, eds., Vol. 11 of Conferences in Research and Practice in Information Technology (Australian Computer Society, Darlinghurst, Australia, 2002), pp. 51–57.
  7. J. Janesick, Scientific Charge Coupled Devices (SPIE, Bellingham, Wash.2001), Vol. PM83. [CrossRef]
  8. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, J. J. Zayhowski, “Three-dimensional imaging laser radars with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).
  9. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).
  10. C. D. Mackay, R. N. Tubbs, R. Bell, D. Burt, I. Moody, “Subelectron read noise at MHz pixel rates,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds., Proc. SPIE4306, 289–298 (2001). [CrossRef]
  11. J. Hynecek, T. Nishiwaki, “Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs,” IEEE Trans. Electron Devices 50, 239–245 (2003). [CrossRef]
  12. M. S. Robbins, B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003). [CrossRef]
  13. Roper Scientific, “On-chip multiplication gain,” (Roper Scientific, Munich, 2003), available at http://www.roperscientific.de/Cascade.html .
  14. J. Vallerga, B. Welsh, O. Siegmund, “Future of imaging photon counting detectors for ground-based astronomy,” in Instrument Design and Performance for Optical/Infrared Ground-Based Telescopes, M. Iye, A. F. Moorwood, eds., Proc. SPIE4841, 795–804 (2003). [CrossRef]
  15. J. G. Timothy, “Recent advances with the MAMA detector systems,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 134–137 (1994). [CrossRef]
  16. O. Siegmund, M. Lampton, J. Bixler, S. Chakrabarti, J. Vallerga, S. Bowyer, R. F. Malina, “Wedge and strip image readout systems for photon-counting detectors in space astronomy,” J. Opt. Soc. Am. A 3, 2139 (1986). [CrossRef]
  17. J. L. A. Fordham, D. A. Bone, R. J. Norton, P. D. Read, “The MIC photon counting detector,” Proceedings of the ESA Symposium on Photon Counting Detectors for Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1992), Vol. SP-356, pp. 103–106.
  18. M. H. Baron, W. C. Priedhorsky, “Crossed-delay line detector for ground- and space-based applications,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. SPIE2006, 188–197 (1993). [CrossRef]
  19. P. Jelinsky, P. Morrissey, J. Malloy, S. Jelinsky, O. Siegmun, C. Martin, D. Schiminovich, K. Forster, T. Wyder, P. Friedman, “Performance results of the GALEX cross delay line detectors,” in Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation, J. C. Blades, O. H. Siegmund, eds., Proc. SPIE4854, 233–240 (2003). [CrossRef]
  20. C. Ho, W. Priedhorsky, M. Baron, “Detecting small debris using a ground-based photon-counting detector,” in Space Debris Detection and Mitigation, F. A. Allahdadi, ed., Proc. SPIE1951, 67–75 (1993). [CrossRef]
  21. N. Arthur, E. Cox, Allen’s Astrophysical Quantities, 4th ed. (AIP/Springer-Verlag, New York, 2001), p. 353.
  22. C. Leinert, S. Bowyer, L. K. Haikala, M. S. Hanner, M. G. Hauser, A. Levasseur-Regourd, C. Mann, K. Mattila, W. T. Reach, W. Schlosser, H. J. Staude, G. N. Toller, J. Weiland, J. L. Weinberg, A. N. Witt, “The 1997 reference of diffuse night sky brightness,” Astron. Astrophys. Suppl. Ser. 127, 1–99 (1998). [CrossRef]
  23. e2v technologies, “Charge coupled devices selection guide” (e2v technologies, Chelmsford, UK, 2003), available from http://e2vtechnologies.com/introduction/prod_ccd.htm .
  24. C. Ho, International, Space, and Technology Division, Los Alamos National Laboratory, Los Alamos, N. Mex., ho@lanl.gov (private communication, 2004).
  25. L. O. Gruppe, “Ultrafast spectroscopy and imaging with ICCD Detectors” (Lot-Oriel, Darmstadt, Germany, 2003), available from www.lot-oriel.com/pdf/all/andor_vt_iccd.pdf .
  26. G. H. Stokes, C. Von Braun, R. Sridharan, D. Harrison, J. Sharma, “The Space-Based Visible program,” Lincoln Lab. J. 11, 205–239 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited