OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 3 — Jan. 20, 2005
  • pp: 434–444

Airborne system for fast measurements of upwelling and downwelling spectral actinic flux densities

Evelyn Jäkel, Manfred Wendisch, Anke Kniffka, and Thomas Trautmann  »View Author Affiliations

Applied Optics, Vol. 44, Issue 3, pp. 434-444 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An airborne system for fast measurements of spectral actinic flux densities in the wavelength range 305–700 nm is introduced. The system is called the Actinic Flux Density Meter (AFDM). The AFDM utilizes the diode array technique and measures downwelling and upwelling spectral actinic flux densities separately with a time resolution of less than 1 s. For airborne measurements this means a spatial resolution of ~ 60 m, assuming an average aircraft velocity of 60 m/s. Thus the AFDM resolves fast changes in the actinic radiation field, which are of special importance for conditions of inhomogeneous clouds or surface reflection. Laboratory characterization measurements of the AFDM are presented, and a method to correct the nonideal angular response of the optical inlets is introduced. Furthermore, exemplar field data sampled simultaneously with spectral irradiance measurements are shown. The horizontal variability of the measured spectra of actinic flux density is quantified, and profile measurements for overcast situations are presented. Finally, the effects of clouds on the spectral actinic flux density are discussed.

© 2005 Optical Society of America

OCIS Codes
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

Original Manuscript: September 19, 2003
Revised Manuscript: March 22, 2004
Manuscript Accepted: May 11, 2004
Published: January 20, 2005

Evelyn Jäkel, Manfred Wendisch, Anke Kniffka, and Thomas Trautmann, "Airborne system for fast measurements of upwelling and downwelling spectral actinic flux densities," Appl. Opt. 44, 434-444 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Müller, A. Kraus, A. Hofzumahaus, “O3→ O(1D) photolysis frequencies determined from spectroradiometer measurements of solar actinic UV radiation: comparison chemical actinometer measurements,” Geophys. Res. Lett. 22, 679–682 (1995). [CrossRef]
  2. E. Eckstein, D. Perner, Ch. Brühl, T. Trautmann, “A new 4π-spectroradiometer: instrument design and application to clear sky and broken cloud conditions,” Atmos. Chem. Phys. Discuss. 2, 1939–1977 (2002). [CrossRef]
  3. G. D. Edwards, P. S. Monks, “Performance of a single-monochromator diode array spectroradiometer for the determination of actinic flux and atmospheric photolysis frequencies,” J. Geophys. Res. 108, D16, 8546, doi: (2003). [CrossRef]
  4. F. C. Bahe, W. N. Marx, U. Schurath, E. P. Roth, “Determination of the absolute photolysis rate of ozone by sunlight at ground level,” Atmos. Environ. 13, 1515–1522 (1979). [CrossRef]
  5. R. R. Dickerson, D. H. Stedman, A. C. Delany, “Direct measurement of ozone and nitrogen dioxide photolysis rates in the troposphere,” J. Geophys. Res. 87, 4933–4946 (1982). [CrossRef]
  6. S. T. Bairai, D. H. Stedman, “Actinometric measurement of the J[O3− O(1D)] using a luminol detector,” Geophys. Res. Lett. 19, 2047–2050 (1992). [CrossRef]
  7. R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992). [CrossRef]
  8. P. Kelley, R. R. Russel, W. T. Luke, G. L. Kok, “Rate of NO2 photolysis from the surface to 7.6 km altitude in clear sky and clouds,” Geophys. Res. Lett. 22, 2621–2624 (1995). [CrossRef]
  9. W. Junkermann, U. Platt, A. Volz-Thomas, “A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules,” J. Atmos. Chem. 8, 203–227 (1989). [CrossRef]
  10. T. Brauers, A. Hofzumahaus, “Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50°N and 30°S,” J. Atmos. Chem. 15, 269–282 (1992). [CrossRef]
  11. M. van Weele, J. V.-G. de Arellano, F. Kuik, “Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates,” Tellus 47, 353–364 (1995). [CrossRef]
  12. M. Wendisch, S. Mertes, A. Ruggaber, T. Nakajima, “Vertical profiles of aerosol and radiation and the influence of a temperature inversion: measurements and radiative transfer calculations,” J. Appl. Meteorol. 35, 1703–1715 (1996). [CrossRef]
  13. J. Crawford, D. Davis, G. Chen, R. Shetter, M. Müller, J. Barrick, J. Olson, “An assessment of cloud effects on photolysis rate coefficients: Comparison of experimental and theoretical values,” J. Geophys. Res. 104, D55725–5734 (1999).
  14. B. Früh, T. Trautmann, M. Wendisch, A. Keil, “Comparison of observed and simulated NO2 photodissociation frequencies in a cloudless atmosphere and in continental boundary layer clouds,” J. Geophys. Res. 105, D89843–9857 (2000).
  15. B. Früh, E. Eckstein, T. Trautmann, M. Wendisch, M. Fiebig, U. Feister, “Ground-based measured and calculated spectra of actinic flux density and downward UV irradiance in cloudless conditions and their sensitivity to aerosol microphysical properties,” J. Geophys. Res. 108, doi: (2003). [CrossRef]
  16. C. T. McElroy, “A spectrometer for the measurement of direct and scattered solar irradiance from on board the NASA ER-2 high-altitude research aircraft,” Geophys. Res. Lett. 22, 1361–1364 (1995). [CrossRef]
  17. W. Junkermann, C. Brühl, D. Perner, E. Eckstein, T. Trautmann, B. Früh, R. Dlugi, T. Gori, A. Ruggaber, J. Reuder, M. Zelger, A. Hofzumahaus, A. Kraus, F. Rohrer, D. Brüning, G. Moortgart, A. Horowitz, J. Tadic, “Actinic radiation and photolysis processes in the lower troposphere: effect of clouds and aerosols,” J. Atmos. Chem. 42, 413–441 (2002). [CrossRef]
  18. R. E. Shetter, L. Cinquini, B. L. Lefer, S. R. Hall, S. Madronich, “Comparison of airborne measured and calculated spectral actinic flux and derived photolysis frequencies during the PEM Tropics B mission,” J. Geophys. Res. 107, doi: (2002). [CrossRef]
  19. A. F. Bais, S. Madronich, J. Crawford, S. R. Hall, B. Mayer, M. van Weele, J. Lenoble, J. G. Calvert, C. A. Cantrell, R. E. Shetter, A. Hofzumahaus, P. Koepke, P. S. Monks, G. Frost, R. McKenzie, N. Krotkov, A. Kylling, W. H. Swartz, S. Lloyd, G. Pfister, T. J. Martin, E. P. Roeth, E. Griffioen, A. Ruggaber, M. Krol, A. Kraus, G. D. Edwards, M. Müller, B. L. Lefer, P. Johnston, H. Schwander, D. Flittner, B. G. Gardiner, J. Barrick, R. Schmitt, “International photolysis frequency measurement and model intercomparison: spectral actinic solar flux measurements and modeling,” J. Geophys. Res. 108, D16, doi: (2003). [CrossRef]
  20. R. E. Shetter, W. Junkermann, W. H. Swartz, G. J. Frost, J. H. Crawford, B. L. Lefer, J. D. Barrick, S. R. Hall, A. Hofzumahaus, A. Bais, J. G. Calvert, C. A. Cantrell, S. Madronich, M. Muller, A. Kraus, P. S. Monks, G. D. Edwards, R. McKenzie, P. Johnston, R. Schmitt, E. Griffioen, M. Krol, A. Kylling, R. R. Dickerson, S. A. Lloyd, T. Martin, B. Gardiner, B. Mayer, G. Pfister, E. P. Roth, P. Koepke, A. Ruggaber, H. Schwander, M. van Weele, “Photolysis frequency of NO2: measurement and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI),” J. Geophys. Res. 108, D16, 8544, doi: (2003). [CrossRef]
  21. R. E. Shetter, M. Müller, “Photolysis frequency measurements using actinic flux spectroradiometry during PEM-Tropics mission: Instrumentation description and some results,” J. Geophys. Res. 104, D55647–5661 (1999).
  22. M. Wendisch, D. Müller, D. Schell, J. Heintzenberg, “An airborne spectral albedometer with active horizontal stabilization,” J. Atmos. Oceanic Technol. 18, 1856–1866 (2001). [CrossRef]
  23. M. Wendisch, B. Mayer, “Vertical distribution of spectral solar irradiance in the cloudless sky—a case study,” Geophys. Res. Lett. 30, 1183–1186 (2003). [CrossRef]
  24. M. Wendisch, P. Pilewskie, E. Jäkel, S. Schmidt, J. Pommier, S. Howard, H. H. Jonsson, H. Guan, M. Schröder, B. Mayer, “Airborne measurements of areal spectral surface albedo over different sea and land surfaces,” J. Geophys. Res. 109, D08203, doi: (2004). [CrossRef]
  25. A. Volz-Thomas, A. Lerner, H. W. Pätz, M. Schultz, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996). [CrossRef]
  26. A. Hofzumahaus, A. Kraus, M. Müller, “Solar actinic spectroradiometry: a technique for measuring photolysis frequencies in the atmosphere,” Appl. Opt. 38, 4443–4460 (1999). [CrossRef]
  27. K. S. Stamnes, S. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer model in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  28. A manuscript to be called “Spectral actinic flux in the lower troposphere: measurement and 1-D simulations for cloudless, broken cloud, and overcast situations,” is being prepared by A. Kylling, Norwegian Institute for Air Research, 2027 Kjeller, Norway.
  29. A. R. Webb, A. Kylling, M. Wendisch, E. Jäkel, “Airborne measurements of ground and cloud spectral albedos under low aerosol loads,” J. Geophys. Res. 109, doi: (2004). [CrossRef]
  30. A. Keil, M. Wendisch, E. Brüggemann, “Measured profiles of aerosol particle absorption and its influence on clear-sky solar radiative forcing,” J. Geophys. Res. 106, 1237–1247 (2001). [CrossRef]
  31. W. DeMore, S. Sander, D. Golden, R. Hampson, M. Kurylo, C. Howard, A. Ravishankara, C. Kolb, M. Molina, “Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation number 12,” JPL Publ. 97-4 (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., 1997).
  32. T. Trautmann, I. Podgorny, J. Landgraf, P. J. Crutzen, “Actinic fluxes and photodissociation coefficients in cloud fields embedded in realistic atmospheres,” J. Geophys. Res. 104, 30,173–30,192 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited