OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 30 — Oct. 20, 2005
  • pp: 6361–6372

Analysis of intrachip electrical and optical fanout

Anand M. Pappu and Alyssa B. Apsel  »View Author Affiliations


Applied Optics, Vol. 44, Issue 30, pp. 6361-6372 (2005)
http://dx.doi.org/10.1364/AO.44.006361


View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine the benefits of electrical isolation in intrachip optical signaling. We calculate the delay and energy metrics of an optical interconnect with fanout driving an electrical load. By examining fanout and including load drivers into delay equations, we make a shift from the general trend of looking at optical interconnects as a replacement for long parasitic wires. Our calculations show that optical fanout provides a large improvement in an Eτ2 (energy delay squared) metric and improves performance even at very short intrachip distances. The break-even length corresponds to the wiring length of 250 minimum-size inverters that are compactly laid out. These results provide a compelling reason to further examine the implementation of optical interconnects.

© 2005 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.6750) Integrated optics : Systems
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Integrated Optics

History
Original Manuscript: December 21, 2004
Revised Manuscript: April 22, 2005
Manuscript Accepted: April 25, 2005
Published: October 20, 2005

Citation
Anand M. Pappu and Alyssa B. Apsel, "Analysis of intrachip electrical and optical fanout," Appl. Opt. 44, 6361-6372 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-30-6361


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. Souri, K. Banerjee, K. Saraswat, A. Rahman, R. Reif, J. Meindl, “Interconnect limits on gigascale integration in the 21st century,” Proc. IEEE 89, 305–324 (2001). [CrossRef]
  2. A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996). [CrossRef]
  3. A. V. Mule, E. N. Glytsis, T. K. Gaylord, J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. VLSI Syst. 10, 582–594 (2002). [CrossRef]
  4. A. Naeemi, A. V. Mule, J. D. Meindl, “Partition length between board-level electrical and optical interconnects,” Proc. IEEE Interconnect Technol. Conf.230–232 (2003). [CrossRef]
  5. M. B. Venditti, E. Laprise, J. Faucher, P.-O. Laprise, J. E. A. Lugo, D. V. Plant, “Design and test of an optoelectronic-VLSI chip with 540-element receiver–transmitter arrays using differential optical signaling,” IEEE J. Sel. Top. Quantum Electron. 9, 361–379 (2003). [CrossRef]
  6. L. A. B. Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Link, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, D. W. Dolfi, “Parallel optical interconnects 100 Gbps,” J. Lightwave Technol. 22, 2055–2063 (2004). [CrossRef]
  7. C. Cook, J. E. Cunningham, A. Hargrove, G. Ger, K. W. Goossen, W. Y. Jan, H. H. Kim, R. Krause, M. Manges, M. Morrissey, M. Perinpanayagam, A. Persaud, G. J. Shevchuk, V. Sinyansky, A. V. Krishnamoorthy, “A 36-channel parallel optical interconnect module based on optoelectronics-on-VLSI technology,” IEEE J. Sel. Top. Quantum Electron. 9, 387–399 (2003). [CrossRef]
  8. G. I. Yayla, P. J. Marchand, S. C. Esener, “Speed and energy analysis of digital interconnections: comparison of on-chip, off-chip, and free-space technologies,” Appl. Opt. 37, 205–227 (1998). [CrossRef]
  9. A. Levi, “Optical interconnects in systems,” Proc. IEEE 88, 750–757 (2000). [CrossRef]
  10. J. H. Collet, F. Caignet, F. Sellaye, D. Litaize, “Performance constraints for on-chip optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 425–432 (2003). [CrossRef]
  11. A. J. Martin, M. Nystrom, P. Penzes, “Et2: a metric for time and energy efficiency of computation,” http://caltechcstr.library.caltech.edu/308/ , Chap. 1.
  12. A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U. Cummings, T. K. Lee, “The design of an asynchronous MIPS R3000 microprocessor,” Proc. Adv. Res. VLSI164–181 (1997). [CrossRef]
  13. C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, D. A. Miller, “Receiverless optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003). [CrossRef]
  14. R. Ho, K. W. Mai, M. A. Horowitz, “The future of wires,” Proc. IEEE 89, 490–504 (2001). [CrossRef]
  15. D. Huang, T. Sze, A. Landin, R. Lytel, H. L. Davidson, “Optical interconnects: out of the box forever?” IEEE J. Sel. Top. Quantum Electron. 9, 614–623 (2003). [CrossRef]
  16. S. Wakayama, K. Gotoh, M. Saito, H. Araki, T. Shing Cheung, J. Ogawa, H. Tamura, “10-ns row cycle DRAM using temporal data storage buffer architecture,” in Digest of Technical Papers, Symposium on VLSI Circuits (IEEE, 1998), pp. 12–15.
  17. I. Sutherland, B. Sproull, D. Harris, Logical Effort: Designing Fast CMOS Circuits (Morgan Kauffman, 1999).
  18. W. J. Dally, J. W. Poulton, Digital Systems Engineering (Cambridge University, 1998). [CrossRef]
  19. D. J. Heatley, “Optical receivers,” in Design of Analog–Digital VLSI Circuits for Telecommunications and Signal Processing, Y. T. Jose E. Franca, ed. (Prentice-Hall, 1994), Chap. 5.
  20. V. M. Hietala, K. L. Lear, M. G. Armendariz, C. P. Tigges, H. Q. Hou, J. C. Zolper, “Electrical characterization and application of very high speed vertical cavity surface emitting lasers,” in IEEE MTT-S International Microwave Symposium Digest, Vol. 1 (Institute of Electrical and Electronics Engineers, 1997), pp. 355–358.
  21. F. E. Kiamilev, A. V. Krishnamoorthy, “A high-speed 32-channel CMOS VCSEL driver with built-in self-test and clock generation circuitry,” IEEE J. Sel. Top. Quantum Electron. 5, 287–295 (1999). [CrossRef]
  22. M. Ingels, M. Steyaert, “A 1-gbit/s, 0.7-μm CMOS optical receiver with full rail-to-rail output swing,” IEEE J. Solid-State Circuits 34, 971–977 (1999). [CrossRef]
  23. N. H. E. Weste, K. Eshraghian, Principles of CMOS VLSI Design (Addison-Wesley, 1994).
  24. M. W. Haney, H. Thienpont, T. Yoshimura, “Introduction to the issue on optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 347–349 (2003). [CrossRef]
  25. M. Horowitz, “Timing models for MOS circuits,” Ph.D. dissertation (Stanford University, 1983), http://mos.stanford.edu/papers/mh_thesis.pdf .
  26. T. Yin, A. Apsel, A. M. Pappu, C. Reungsinpinya, A. Khimani, “Optical interconnects in commercial BiCMOS,” in Optoelectronic Integration in Silicon, D. J. Robbins, G. E. Jabbour, eds., Proc. SPIE5357, 1–10 (2004). [CrossRef]
  27. K. Ogata, Modern Control Engineering (Prentice-Hall, 1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited