OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 30 — Oct. 20, 2005
  • pp: 6388–6401

Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications

Thomas Weyrauch and Mikhail A. Vorontsov  »View Author Affiliations


Applied Optics, Vol. 44, Issue 30, pp. 6388-6401 (2005)
http://dx.doi.org/10.1364/AO.44.006388


View Full Text Article

Enhanced HTML    Acrobat PDF (1541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavefront control experiments in strong scintillation conditions (scintillation index, ≃1) over a 2.33 km, near-horizontal, atmospheric propagation path are presented. The adaptive-optics system used comprises a tracking and a fast-beam-steering mirror as well as a 132-actuator, microelectromechanical-system, piston-type deformable mirror with a VLSI controller that implements stochastic parallel gradient descent control optimization of a system performance metric. The experiments demonstrate mitigation of atmospheric distortions with a speckle beacon typical for directed energy and free-space laser communication applications.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 14, 2005
Manuscript Accepted: April 25, 2005
Published: October 20, 2005

Citation
Thomas Weyrauch and Mikhail A. Vorontsov, "Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications," Appl. Opt. 44, 6388-6401 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-30-6388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes, Vol. 16 of Oxford Series in Optical and Imaging Sciences (Oxford University, 1998).
  2. F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999). [CrossRef]
  3. C. A. Primmerman, T. R. Price, R. A. Humphreys, B. G. Zollars, H. T. Barclay, J. Herrmann, “Atmospheric-compensation experiments in strong-scintillation conditions,” Appl. Opt. 34, 2081–2088 (1995). [CrossRef] [PubMed]
  4. B. M. Levine, E. A. Martinsen, A. Wirth, A. Jankevics, M. Toledo-Quinones, F. Landers, T. L. Bruno, “Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive-optics correction in laser communications,” Appl. Opt. 37, 4553–4560 (1998). [CrossRef]
  5. “Report of the High Energy Laser Executive Review Panel,” Department of Defense Laser Master Plan (U.S. Department of Defense, 2000), Vol. 2.
  6. N. B. Baranova, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkunov, B. Y. Zeldovich, “Wave-front dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. 73, 525–528 (1983). [CrossRef]
  7. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998). [CrossRef]
  8. M. A. Vorontsov, G. W. Carhart, “Adaptive phase distortion correction in strong speckle-modulation conditions,” Opt. Lett. 27, 2155–2157 (2002). [CrossRef]
  9. M. A. Vorontsov, G. W. Carhart, J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997). [CrossRef] [PubMed]
  10. M. A. Vorontsov, G. W. Carhart, M. Cohen, G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17, 1440–1453 (2000). [CrossRef]
  11. T. Weyrauch, M. A. Vorontsov, T. G. Bifano, J. A. Hammer, M. Cohen, G. Cauwenberghs, “Microscale adaptive optics: wavefront control with a μ-mirror array and a VLSI stochastic gradient descent controller,” Appl. Opt. 40, 4243–4253 (2001). [CrossRef]
  12. A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, R. G. Smits, “Correction of atmospheric distortion with an image-sharpening telescope,” J. Opt. Soc. Am. 67, 298–303 (1977). [CrossRef]
  13. S. L. McCall, T. R. Brown, A. Passner, “Improved optical stellar image using a real-time phase-correction system: initial results,” Astrophys. J. 211, 463–468 (1977). [CrossRef]
  14. J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978). [CrossRef]
  15. T. R. O’Meara, “The multidither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306–315 (1977). [CrossRef]
  16. J. E. Pearson, S. Hansen, “Experimental studies of a deformable-mirror adaptive optical system,” J. Opt. Soc. Am. 67, 325–333 (1977). [CrossRef]
  17. J. C. Spall, Introduction to Stochastic Search and Optimization (Wiley, 2003). [CrossRef]
  18. R. T. Edward, M. Cohen, G. Cauwenberghs, M. A. Vorontsov, G. W. Carhart, “Analog VLSI parallel stochastic optimization for adaptive optics,” in Learning on Silicon, G. Cauwenberghs, M. A. Bayoumi, eds. (Kluwer Academic, 1999), Chap. 16, pp. 359–382.
  19. T. G. Bifano, J. A. Perreault, P. A. Bierden, C. E. Dimas, “Micromachined deformable mirrors for adaptive optics,” in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, R. K. Tyson, eds., Proc. SPIE4825, 10–13 (2002).
  20. M. A. Vorontsov, V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15, 2745–2758 (1998). [CrossRef]
  21. T. Weyrauch, M. A. Vorontsov, “Dynamic wave-front distortion compensation with a 134-control-channel submillisecond adaptive system,” Opt. Lett. 27, 751–753 (2002). [CrossRef]
  22. M. A. Vorontsov, G. W. Carhart, M. Banta, T. Weyrauch, J. Gowens, J. C. Carrano, “Atmospheric laser optics testbed (A_LOT): atmospheric propagation characterization, beam control and imaging results,” in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE5162, 37–48 (2003).
  23. M. E. Gravecha, A. S. Gurvich, S. S. Kashkarov, V. L. V. Pokasov, “Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation,” in Laser Beam Propagation in the Atmosphere, J. Strohbehn, ed. (Springer-Verlag, 1978).
  24. L. C. Andrews, R. L. Phillips, C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001). [CrossRef]
  25. Y. A. Kravtsov, “New effects in wave propagation and scattering in random media (a mini review),” Appl. Opt. 32, 2681–2691 (1993). [CrossRef] [PubMed]
  26. T. G. Bifano, J. Perrault, R. Krishnamoorthy Mali, M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 83–89 (1999). [CrossRef]
  27. V. Coudé du Foresto, M. Faucherre, N. Hubin, P. Gitton, “Using single-mode fibers to monitor fast Strehl ratio fluctuations,” Astron. Astrophys. Suppl. Ser. 145, 305–310 (2000). [CrossRef]
  28. J. C. Ricklin, F. M. Davidson, “Atmospheric optical communication with a Gaussian Schell beam,” J. Opt. Soc. Am. A 20, 856–866 (2003). [CrossRef]
  29. M. A. Vorontsov, G. W. Carhart, J. W. Gowens, J. C. Ricklin, “Adaptive correction of wavefront phase distortions in a free-space laser communication: system and method,” U.S. patent (pending).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited