OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 30 — Oct. 20, 2005
  • pp: 6426–6443

Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory

Steven W. Brown, B. Carol Johnson, Stuart F. Biggar, Edward F. Zalewski, John Cooper, Pavel Hajek, Edward Hildum, Patrick Grant, Robert A. Barnes, and James J. Butler  »View Author Affiliations


Applied Optics, Vol. 44, Issue 30, pp. 6426-6443 (2005)
http://dx.doi.org/10.1364/AO.44.006426


View Full Text Article

Acrobat PDF (472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

© 2005 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.5700) Instrumentation, measurement, and metrology : Reflection

ToC Category:
Instrumentation, Measurement, and Metrology

Citation
Steven W. Brown, B. Carol Johnson, Stuart F. Biggar, Edward F. Zalewski, John Cooper, Pavel Hajek, Edward Hildum, Patrick Grant, Robert A. Barnes, and James J. Butler, "Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory," Appl. Opt. 44, 6426-6443 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-30-6426


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. D. King, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, and F. G. Osterwisch, “Airborne scanning spectrometer for remote sensing of cloud density, aerosol, water vapor, and surface properties,” J. Atmos. Ocean. Technol.  13, 777–794 (1996). [CrossRef]
  2. S. Hook, J. J. Meyers, K. J. Thome, M. Fitzgerald, and A. B. Kahle, “The MODIS/ASTER Airborne Simulator (MASTER) — a new instrument for Earth science studies,” Remote Sen. Environ.  76, 93–102 (2001). [CrossRef]
  3. G. T. Arnold, M. F. Fitzgerald, P. S. Grant, S. E. Platnick, S. Tsay, J. S. Myers, M. D. King, R. O. Green, and L. Remer, “MODIS Airborne Simulator radiometric calibration,” in Earth Observing Systems, W. L. Barnes, ed., Proc. SPIE  2820, 56–66 (1996). [CrossRef]
  4. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are the best available for the purpose.
  5. B. C. Johnson, S. S. Bruce, J. M. Houston, T. R. O'Brian, A. Thompson, S. B. Hooker, and J. L. Mueller, in The Fourth SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-4), NASA Tech. Memo. 104566, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, 1996), Vol. 37, pp. 1–65.
  6. J. J. Butler, B. L. Markham, B. C. Johnson, S. W. Brown, H. W. Yoon, R. A. Barnes, S. F. Biggar, E. F. Zalewski, P. R. Spyak, F. Sakuma, and J. W. Cooper, “Radiometric measurement comparisons using transfer radiometers in support of the calibration of NASA's Earth Observing System (EOS) sensors,” in Sensors, Systems and Next-Generation Satellites III, H. Fujisada, ed., Proc. SPIE  3870, 180–192 (1999). [CrossRef]
  7. J. J. Butler, B. C. Johnson, and R. A. Barnes, “Radiometric measurement comparisons at NASA's Goddard Space Flight Center. I. The GSFC sphere sources,” Earth Observer  14(3), 3–8 (2002).
  8. J. J. Butler, B. C. Johnson, and R. A. Barnes, “Radiometric measurement comparisons at NASA's Goddard Space Flight Center. II. Irradiance lamp comparisons and the NIST sphere source,” Earth Observer  14(4), 25–29 (2002).
  9. J. J. Butler, S. W. Brown, R. D. Saunders, B. C. Johnson, S. F. Biggar, E. F. Zalewski, B. L. Markham, P. N. Gracey, J. B. Young, and R. A. Barnes, “Radiometric measurement comparison on the integrating sphere source used in the calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+),” J. Res. Natl. Inst. Stand. Technol.  108, 199–228 (2003).
  10. J. J. Butler and R. A. Barnes, “The use of transfer radiometers in validating the visible to shortwave infrared calibrations of radiance sources used by instruments in NASA's Earth Observing System,” Metrologia  40, S70–S77 (2003). [CrossRef]
  11. S. W. Brown, B. C. Johnson, H. W. Yoon, J. J. Butler, R. A. Barnes, S. F. Biggar, P. R. Spyak, K. Thome, E. Zalewski, M. Helmlinger, C. Bruegge, S. Schiller, G. Fedosejevs, R. Gauthier, S. Tsuchida, and S. Machida, “Radiometric characterization of field radiometers in support of the 1997 Lunar Lake, Nevada, experiment to determine surface reflectance and top-of-atmosphere radiance,” Remote Sens. Environ.  77, 367–376 (2001). [CrossRef]
  12. S. W. Brown and B. C. Johnson, “A portable integrating sphere source for the Earth Observing System's calibration validation programme,” Int. J. Remote Sens.  24, 215–224 (2003). [CrossRef]
  13. S. W. Brown and B. C. Johnson, “A portable integrating sphere source for radiometric calibrations from the visible to the shortwave infrared,” Earth Observer  11, 14–18 (1999).
  14. J. H. Walker, R. D. Saunders, and A. T. Hattenburg, Spectral Radiance Calibrations, NBS Spec. Pub. 250-1 (U. S. Government Printing Office, 1987).
  15. The reflectance factor is the ratio of the reflected flux to that from an ideal surface.
  16. J. H. Walker, R. D. Saunders, J. K. Jackson, and D. A. McSparron, Spectral Irradiance Calibrations, NBS Spec. Pub. 250-20 (U. S. Government Printing Office, 1987).
  17. E. A. Early, P. Y. Barnes, B. C. Johnson, J. J. Butler, C. J. Bruegge, S. F. Biggar, P. R. Spyak, and M. M. Pavlov, “Bidirectional reflectance round-robin in support of the Earth Observing System program,” J. Atmos. Oceanic Technol.  17, 1077–1091 (2000). [CrossRef]
  18. P. Y. Barnes and J. J. Hsia, 45°/0° Reflectance Factors of Pressed Polytetrafluoroethylene (PTFE) Powder, NIST Tech. Note 1413 (U. S. Government Printing Office, 1995).
  19. J. J. Hsia and V. R. Weidner, “NBS 45°/normal reflectometer for absolute reflectance factors,” Metrologia  17, 97–102 (1981). [CrossRef]
  20. E. A. Early, A. Thompson, C. Johnson, J. DeLuisi, P. Disterhoft, D. Wardle, E. Wu, W. Mou, Y. Sun, T. Lucas, T. Mestechkina, L. Harrison, J. Berndt, and D. S. Hayes, “The 1995 North American interagency intercomparison of ultraviolet monitoring spectroradiometers,” J. Res. Natl. Inst. Stand. Technol.  103, 15–62 (1998).
  21. B. N. Taylor and C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurements Results, NIST Tech. Note 1297 (U. S. Government Printing Office, 1994).
  22. B. C. Johnson, J. B. Fowler, and C. L. Cromer, The Sea WiFS Transfer Radiometer (SXR), NASA Tech Memo. 1998-206892, S.B.Hooker and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 1998), Vol. 1, pp. 1–58.
  23. S. W. Brown, B. C. Johnson, and H. W. Yoon, “Description of a portable spectroradiometer to validate EOS radiance scales in the shortwave infrared,” Earth Observer  10, 43–47 (1998).
  24. S. F. Biggar and P. N. Slater, “Preflight cross-calibration radiometers for EOS AM-1 platform visible and near-IR sources,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE  1939, 243–249 (1993). [CrossRef]
  25. P. R. Spyak, D. S. Smith, J. Thiry, and C. Burkhart, “Short-wave infrared transfer radiometer for the calibration of the Moderate-Resolution Imaging Spectrometer and the Advance Spaceborne Thermal Emission and Reflection Radiometer,” Appl. Opt.  39, 5694–5706 (2000).
  26. J. H. Walker, C. L. Cromer, and J. T. McLean, “A technique for improving the calibration of large-area sphere sources,” in Calibration of Passive Remote Observing Optical and Microwave Instrumentation, B. W. Guenther, ed., Proc. SPIE  1493, 224–230 (1991). [CrossRef]
  27. J. E. Proctor and P. Y. Barnes, “NIST high accuracy reference reflectometer–spectrophotometer,” J. Res. Natl. Inst. Stand. Technol.  101, 619–627 (1996).
  28. H. W. Yoon, C. E. Gibson, and P. Y. Barnes, “The realization of the National Institute of Standards and Technology detector-based spectral irradiance scale,” Appl. Opt.  41, 5879–5890 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited