OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 30 — Oct. 20, 2005
  • pp: 6496–6505

Detection of sputtered metals with cavity ring-down spectroscopy

A. P. Yalin, V. Surla, M. Butweiller, and J. D. Williams  »View Author Affiliations


Applied Optics, Vol. 44, Issue 30, pp. 6496-6505 (2005)
http://dx.doi.org/10.1364/AO.44.006496


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on use of cavity ring-down spectroscopy (CRDS) as a means to detect and quantify ion sputtering of refractory metal species. CRDS measurements are made with a neodymium:YAG-pumped optical parametric oscillator laser system in the 375–400 nm region. CRDS sputtering measurements are presented for argon ions incident on iron, aluminum, molybdenum, and titanium. The measurements are based on absorption from fine-structure levels of the electronic ground-state multiplets. For each species, characteristic spectra are provided, the dependence of sputtered particle number density on the beam current is examined, measured densities are compared with a sputter model, and detection limits are determined. For iron, aluminum, and titanium we probe multiple fine-structure levels within the ground-state multiplet and obtain information on their relative populations.

© 2005 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.1030) Spectroscopy : Absorption

ToC Category:
Spectroscopy

History
Original Manuscript: February 22, 2005
Revised Manuscript: June 1, 2005
Manuscript Accepted: June 13, 2005
Published: October 20, 2005

Citation
A. P. Yalin, V. Surla, M. Butweiller, and J. D. Williams, "Detection of sputtered metals with cavity ring-down spectroscopy," Appl. Opt. 44, 6496-6505 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-30-6496


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Pellin, R. B. Wright, D. M. Gruen, “Laser fluorescence spectroscopy of sputtered zirconium atom,” J. Chem. Phys. 74, 6448–6457 (1981). [CrossRef]
  2. M. J. Pellin, C. E. Young, M. H. Mendelsohn, D. M. Gruen, R. B. Wright, A. B. Dewald, “Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrstalline Ti,” J. Nucl. Mater. 111–112, 738–743 (1982). [CrossRef]
  3. R. D. Kolasinski, J. E. Polk, “Characterization of cathode keeper by surface layer activation,” paper AIAA-2003–5144, presented at the Thirty-Ninth Joint Propulsion Conference, Huntsville, Alabama, 20–23 June 2003) (American Institute of Aeronautics and Astronautics2003).
  4. N. Andersen, B. Andresen, E. Veje, “Atomic excitations in sputtering processes,” Radiat. Eff. 60, 119–127 (1982). [CrossRef]
  5. R. P. Doerner, D. G. Whyte, D. M. Goebel, “Sputtering yield measurements during low energy xenon plasma bombardment,” J. Appl. Phys. 93, 5816–5823 (2003). [CrossRef]
  6. H. L. Bay, “Laser induced fluorescence as a technique for investigations of sputtering phenomena,” Nucl. Instrum. Methods Phys. Res. B 18, 430–445 (1987). [CrossRef]
  7. H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111–112, 732–737 (1982). [CrossRef]
  8. E. Hintz, D. Rusbüldt, B. Schweer, J. Bohdansky, J. Roth, A. P. Martinelli, “The determination of the flux density of sputtered atoms by means of pulsed dye laser excited fluorescence,” J. Nucl. Mater. 93–94, 656–663 (1980). [CrossRef]
  9. C. E. Young, W. F. Calaway, M. J. Pellin, D. M. Gruen, “Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy,” J. Vac. Sci. Technol. A 2, 693–697 (1984). [CrossRef]
  10. F. Orsitto, M. Borra, F. Coppotelli, G. Gatti, E. Neri, “MoI density measurements by laser induced fluorescence spectroscopy,” Rev. Sci. Instrum. 70, 921–924 (1999). [CrossRef]
  11. E. Dullni, “Laser fluorescence measurements of the flux density of titanium sputtered from an oxygen covered surface,” Appl. Phys. A 38, 131–138 (1985). [CrossRef]
  12. R. B. Wright, M. J. Pellin, D. M. Gruen, C. E. Young, “Laser fluorescence spectroscopy of sputtered uranium atoms,” Nucl. Instrum. Methods 170, 295–302 (1980). [CrossRef]
  13. G. Nicolussi, W. Husinsky, D. Gruber, G. Betz, “Formation of metastable excited Ti and Ni atoms during sputtering,” Phys. Rev. B 51, 8779–8788 (1995). [CrossRef]
  14. A. Goehlich, “Investigation of time-of-flight and energy distributions of atoms and molecules sputtered from oxygen-covered metal surfaces by laser techniques,” Appl. Phys. A 72, 523–529 (2001). [CrossRef]
  15. C. Staudt, A. Wucher, “Sputtering of Ag atoms into metastable excited states,” Phys. Rev. B 66, 085415-1-12 (2002). [CrossRef]
  16. V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy,” Rev. Sci. Instrum. 75, 3025–3030 (2004). [CrossRef]
  17. A. Schwabedissen, A. Brockhaus, A. Georg, J. Engemann, “Determination of the gas-phase Si atom density in radio frequency discharges by means of cavity ring-down spectroscopy,” J. Phys. D 34, 1116–1121 (2001). [CrossRef]
  18. J. P. Booth, G. Cunge, L. Biennier, D. Romanini, A. Kachanov, “Ultraviolet cavity ring-down spectroscopy of free radicals in etching plamas,” Chem. Phys. Lett. 317, 631–636 (2000). [CrossRef]
  19. K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy, ACS Symposium Series 720 (Oxford U. Press, 1999). [CrossRef]
  20. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  21. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  22. A. P. Yalin, R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys. 12, 1065–1072 (2002).
  23. W. R. Hudson, B. A. Banks, “An 8-cm electron bombardment, thruster for anxiluary propulsion,” paper AIAA-73-1131, paper presented at Tenth Electric Propulsion Conference, Lake Tahoe, Nevada, 21–23 October 1973. (American Institute of Aeronautics and Astronautics, 1973).
  24. National Institute of Standards and Technology database available in monographs at http://physics.nist.gov/cgi-bin/AtData/lines_form .
  25. Y. Yamamura, H. Tawara, “Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence,” At. Data Nucl. Data Tables 62, 149–253 (1996). [CrossRef]
  26. G. Betz, K. Wien, “Review: energy and angular distributions of sputtered particle,” Int. J. Mass Spectrom. Ion Processes 140, 1–110 (1994). [CrossRef]
  27. J. D. Williams, M. M. Gardner, M. Johnson, P. J. Wilbur, “Xenon sputter yield measurements for ion thruster materials,” in Proceedings of the 28th International Electric Propulsion Conference (Centre National D’Etudes Spatiales, 2003), paper 2003–0130.
  28. G. Betz, “Electronic excitation in sputtered atoms and the oxygen effect,” Nucl. Instrum. Methods Phys. Res. B 27, 104–118 (1987). [CrossRef]
  29. J. Bastiaansen, V. Philipsen, P. Lievens, R. E. Silverans, E. Vandeweert, “Influence of the atomic structure on the quantum state of sputtered Ir atoms,” Phys. Rev. A 70, 052902 (2004). [CrossRef]
  30. J. E. Polk, “An overview of the results from an 8200 hour wear test of the NSTAR ion thruster,” paper AIAA-99-2446, presented at the Joint Propulsion Conference, Los Angeles, California, June 1999 (American Institute of Aeronautics and Astronautics, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited