OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6526–6536

Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering

Martin Schenk, Thomas Seeger, and Alfred Leipertz  »View Author Affiliations

Applied Optics, Vol. 44, Issue 31, pp. 6526-6536 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pure rotational coherent anti-Stokes Raman scattering measurements of pure CO2 have been performed in a temperature range from 300 to 773 K and for pressure from 0.1 to 5 MPa for the purpose of time-resolved CO2 thermometry. Particular emphasis was put on the comparison of several linewidth approximations to model the experimental spectra. Generally good agreement of the temperature mean values with the thermocouple reference has been found for all models over almost the whole pressure and temperature range investigated. The standard deviations, which increased with temperature, were comparable with or better than the results gained for single-shot measurements of pure N2 or O2–N2 mixtures. Yet for high particle densities close to the critical point of CO2 the limitation of the models became obvious, owing to the strongly increased influence of motional narrowing effects. The characteristics of these effects have been demonstrated by measurements even closer to the critical conditions.

© 2005 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6420) Spectroscopy : Spectroscopy, nonlinear

Original Manuscript: June 15, 2004
Revised Manuscript: April 6, 2005
Manuscript Accepted: July 14, 2005
Published: November 1, 2005

Martin Schenk, Thomas Seeger, and Alfred Leipertz, "Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering," Appl. Opt. 44, 6526-6536 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. R. Regnier, J.-P. E. Taran, “On the possibilities of measuring gas concentration by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973). [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, 1996), Vol. 3.
  3. T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes-Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996). [CrossRef] [PubMed]
  4. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes-Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997). [CrossRef] [PubMed]
  5. L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes-Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996). [CrossRef]
  6. M. Schenk, T. Seeger, A. Leipertz, “Simultaneous temperature and relative O2–N2 concentration measurements by pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 39, 6918–6925 (2000). [CrossRef]
  7. J. Bood, P. E. Bengtsson, M. Alden, “Temperature and concentration measurements in acetylene–nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000). [CrossRef]
  8. M. Afzelius, C. Brackmann, F. Vestin, P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664–6665 (2004). [CrossRef]
  9. M. Schenk, “Simultane Temperatur- und Konzentrationsmessung in binären und ternären Gemischen mittels Rotations-CARS-Spektroskopie,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, A. Liepertz, ed. (ESYTEC Energie und Systemtechnik, 2000), Vol. 2000.2, pp. 98–118.
  10. M. Schenk, T. Seeger, A. Leipertz, “CO2-thermometry and simultaneous temperature and relative CO2/N2-concentration measurements using single-shot dual broadband pure rotational CARS,” in Proceedings of the XVIth International Conference on Raman Spectroscopy, A. M. Heynes, ed. (Wiley, 1998), pp. 160–161.
  11. M. Schenk, T. Seeger, A. Leipertz, “Simultaneous and time resolved temperature and relative CO2-N2and O2-CO2-N2 concentration measurements using pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 44, 5582–5593 (2005). [CrossRef] [PubMed]
  12. A. Weber, “High resolution Raman studies of gases,” in The Raman Effect, A. Anderson, ed. (Marcel Dekker, 1973), Vol. 2, pp. 543–757.
  13. H. H. Nielsen, “The quantum mechanical Hamiltonian for the linear polyatomic molecule treated as a limiting case of the non-linear polyatomic molecule,” Phys. Rev. 66, 282–287 (1944). [CrossRef]
  14. K. Altmann, W. Klöckner, G. Strey, “Der Intensitätsverlauf im reinen Rotations-Raman-Spektrum von CO2 und N2O unter Berücksichtigung des 0110-Niveaus,” Z. Naturforsch.31a, 1311–1317 (1976).
  15. J. J. Barrett, A. Weber, “Pure-rotational Raman scattering in a CO2 electric discharge,” J. Opt. Soc. Am. 60, 70–77 (1970). [CrossRef]
  16. H. P. Godfried, I. F. Silvera, “Rotational R-branch spectroscopy in CO2,” J. Chem. Phys. 78, 121–123 (1983). [CrossRef]
  17. L. A. Rahn, R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986). [CrossRef]
  18. R. L. Farrow, R. Trebino, R. E. Palmer, “High-resolution CARS measurements of temperature profiles and pressure in a tungsten lamp,” Appl. Opt. 26, 331–335 (1987). [CrossRef] [PubMed]
  19. B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Study of collision effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. Rotational and vibrational relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176–2184 (1990). [CrossRef]
  20. T. A. Brunner, D. Pritchard, “Fitting laws for rotationally inelastic collisions,” in Dynamics of the Excited State, K. P. Lawley, ed. (Wiley, 1982), Vol. L, pp. 589–641.
  21. A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979). [CrossRef]
  22. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, O2 in the 300–2400-K temperature range,” Appl. Opt. 27, 3902–3907 (1988). [CrossRef] [PubMed]
  23. R. Span, W. Wagner, “A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 8000 MPa,” J. Phys. Chem. Ref. Data 25, 1509–1596 (1996). [CrossRef]
  24. R. Span, Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum, D-44780 Bochum, Germany (personal communication to K. Kraft, 1994).
  25. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, VDI-Wärmeatlas (Springer, Berlin, 1988).
  26. L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992). [CrossRef]
  27. L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981). [CrossRef]
  28. C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974). [CrossRef]
  29. M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978). [CrossRef]
  30. J. D. Drake, “Rotational Raman intensity-correction factors due to vibrational anharmonicity: their effect on temperature measurements,” Opt. Lett. 7, 440–441 (1982). [CrossRef] [PubMed]
  31. E. Magens, “Nutzung von Rotations-CARS zur Temperatur-und Konzentrationsmessung in Flammen,” in Berichte zur Energie- und Verfahrenstechnik -BEV-, (ESYTEC Energie und Systemtechnik, Germany, 1993), Vol. 93.2.
  32. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Nonlinear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, 1988), Vol. 15, pp. 193–251.
  33. T. Lasser, “An alternative method for CARS-spectra calculation,” Opt. Commun. 35, 447–450 (1980). [CrossRef]
  34. L. Martinsson, “Theoretical development of rotational CARS for combustion diagnostics,” Ph.D. dissertation (Lund Institute of Technology, 1994).
  35. M. Alden, P.-E. Bengtsson, D. Nilsson, H. Edner, S. Kröll, “Rotational CARS—a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989). [CrossRef]
  36. M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot temperature and relative N2–O2 concentration,” Appl. Opt. 37, 5659–5671 (1998). [CrossRef]
  37. R. C. H. Tam, A. D. May, “Motional narrowing of the rotational Raman band of compressed CO, N2, and CO2,” Can. J. Phys. 61, 1558–1566 (1983). [CrossRef]
  38. R. L. Armstrong, “Line Mixing in the ν2 band of CO2,” Appl. Opt. 21, 2141–2145 (1982). [CrossRef] [PubMed]
  39. I. N. Levine, Molecular Spectroscopy (Wiley, 1975).
  40. G. Herzberg, Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of Polyatomic Molecules (Krieger, 1991).
  41. H. Finsterhölzl, J. G. Hohenbleicher, G. Strey, “Intensity distribution in pure rotational Raman spectra of linear molecules in the ground and vibrational Π states: application to acetylene,” J. Raman Spectrosc. 6, 13–19 (1977). [CrossRef]
  42. E. Fermi, “Über den Ramaneffekt des Kohlendioxyds,” Z. Phys. 71, 250–259 (1931). [CrossRef]
  43. D. A. Long, Raman Spectroscopy (McGraw-Hill International, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited