OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6537–6544

Soot particle disintegration and detection by two-laser excimer laser fragmentation fluorescence spectroscopy

Christopher B. Stipe, Donald Lucas, Catherine P. Koshland, and Robert F. Sawyer  »View Author Affiliations

Applied Optics, Vol. 44, Issue 31, pp. 6537-6544 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two-laser technique is used to study laser–particle interactions and the disintegration of soot by high-power UV light. Two separate 20 ns laser pulses irradiate combustion-generated soot nanoparticles with 193 nm photons. The first laser pulse, from 0 to 14.7 J/cm2, photofragments the soot particles and electronically excites the liberated carbon atoms. The second laser pulse, held constant at 13 J/cm2, irradiates the remaining particle fragments and other products of the first laser pulse. The atomic carbon fluorescence at 248 nm produced by the first laser pulse increases linearly with laser fluence from 1 to 6 J/cm2. At higher fluences the signal from atomic carbon saturates. The carbon fluorescence from the second laser pulse decreases as the fluence from the first laser increases, suggesting that the particles fully disintegrate at high laser fluences. We use an energy balance parameter, called the photon/atom ratio, to aid in understanding laser–particle interactions. These results help define the regimes where photofragmentation fluorescence methods quantitatively measure total soot concentrations.

© 2005 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Original Manuscript: November 23, 2004
Revised Manuscript: May 25, 2005
Manuscript Accepted: May 27, 2005
Published: November 1, 2005

Christopher B. Stipe, Donald Lucas, Catherine P. Koshland, and Robert F. Sawyer, "Soot particle disintegration and detection by two-laser excimer laser fragmentation fluorescence spectroscopy," Appl. Opt. 44, 6537-6544 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. P. Koshland, S. L. Fischer, “Diagnostic requirements for toxic emission control,” in Applied Combustion Diagnostics,K. Kohse-Hoinghaus, J. B. Jefferies, eds. (Taylor & Francis, 2002), pp. 606–626.
  2. D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med. 329, 1753–1759 (1993). [CrossRef] [PubMed]
  3. A. Peters, D. W. Dockery, J. E. Muller, M. A. Mittleman, “Increased particulate air pollution and the triggering of myocardial infarction,” Circulation 103, 2810–2815 (2000). [CrossRef]
  4. M. Z. Jacobson, “Strong radiative heating due to the mixing state of carbon black in atmospheric aerosols,” Nature 409, 695–697 (2001). [CrossRef] [PubMed]
  5. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Mashell, C. A. Johnson, “Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC Report (Cambridge U. Press, 2001).
  6. C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Soot detection using excimer laser fragmentation fluorescence spectroscopy,” Proc. Combust. Inst. 29, 2759–2766 (2002). [CrossRef]
  7. M. Z. Martin, M. D. Cheng, R. C. Martin, “Aerosol measurement by laser-induced plasma technique: a review,” Aerosol Sci. Technol. 31, 409–421 (1999). [CrossRef]
  8. K. A. Prather, T. Nordmeyer, K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66, 1403–1407 (1994). [CrossRef]
  9. K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” Proc. Combust. Inst. 25, 193–199 (1994). [CrossRef]
  10. S. Rice, D. Morrison, M. Velez, J. Almanza, “NaOH Concentration in Furnace Offgas Measured by Laser-Induced Fragmentation Fluorescence,” Sandia Report, Vol. 23, No. 3 (Sandia National Laboratories, 2002).
  11. C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994). [CrossRef] [PubMed]
  12. C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” Proc. Combust. Inst. 25, 325–331 (1994). [CrossRef]
  13. S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996). [CrossRef]
  14. S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” Proc. Combust. Inst. 26, 2455–2462 (1996). [CrossRef]
  15. S. G. Buckley, C. J. Damm, W. M. Vitovec, L. A. Sgro, R. F. Sawyer, C. P. Koshland, D. Lucas, “Ammonia detection and monitoring with photofragmentation fluorescence,” Appl. Opt. 37, 8382–8391 (1998). [CrossRef]
  16. M. H. Nunez, N. Omenetto, “Experimental investigation of sodium emission following laser photofragmentation of different sodium-containing aerosols,” Appl. Spectrosc. 55, 809–815 (2001). [CrossRef]
  17. M. H. Nunez, P. Cavalli, G. Petrucci, N. Omenetto, “Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation,” Appl. Spectrosc. 54, 1805–1816 (2000). [CrossRef]
  18. S. G. Buckley, R. F. Sawyer, C. P. Koshland, D. Lucas, “Measurements of lead vapor and particulate in flames and post-flame gases,” Combust. Flame 128, 435–446 (2002). [CrossRef]
  19. C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Excimer laser fragmentation fluorescence spectroscopy as a method for monitoring ammonium nitrate and ammonium sulfate particles,” Chemosphere 42, 655–661 (2001). [CrossRef] [PubMed]
  20. C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Real-time measurement of combustion generated particles with photofragmentation-fluorescence,” Appl. Spectrosc. 55, 1478–1482 (2001). [CrossRef]
  21. C. B. Stipe, B. S. Higgins, D. Lucas, C. P. Koshland, R. F. Sawyer, “Inverted co-flow diffusion flame for producing soot,” Rev. Sci. Instrum. 76, 023908-1-5 (2005). [CrossRef]
  22. R. C. Sausa, A. J. Alfano, A. W. Miziolek, “Efficient ArF laser production and detection of carbon atoms from simple hydrocarbons,” Appl. Opt. 26, 3588–3593 (1987). [CrossRef] [PubMed]
  23. M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon–fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986). [CrossRef]
  24. R. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996). [CrossRef] [PubMed]
  25. J. H. Choi, C. J. Damm, N. J. O’Donovan, R. F. Sawyer, C. P. Koshland, D. Lucas, “Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy (ELFFS),” Appl. Spectrosc. 59, 258–261 (2005). [CrossRef] [PubMed]
  26. M. F. Modest, Radiative Heat Transfer, 1st ed. (McGraw-Hill, 1993).
  27. C. J. Damm, D. Lucas, R. F. Sawyer, C. P. Koshland, “Characterization of Diesel particulate matter with excimer laser fragmentation fluorescence,” Proc. Combust. Inst. 29, 2767–2774 (2002). [CrossRef]
  28. A. Mechler, P. Heszler, Z. Marton, M. Kovacs, T. Szorenyi, Z. Bor, “Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,” Appl. Surf. Sci.154–155, 22–28 (2000). [CrossRef]
  29. J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996). [CrossRef]
  30. C. B. Stipe, J. H. Choi, D. Lucas, C. P. Koshland, R. F. Sawyer, “Nanoparticle production by UV irradiation of combustion generated soot,” J. Nanoparticle Res. 6, 467–477 (2004). [CrossRef]
  31. R. Srininvasan, B. Braren, D. E. Seeger, W. Dreyfus, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19, 916–921 (1986). [CrossRef]
  32. P. E. Dyer, R. Srininvasan, “Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Appl. Phys. Lett. 48, 445–447 (1986). [CrossRef]
  33. J. E. Carranza, D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002). [CrossRef] [PubMed]
  34. D. B. Geohegan, A. A. Puretzky, G. Duscher, S. J. Penny-cook, “Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation,” Appl. Phys. Lett. 72, 2987–2989 (1998). [CrossRef]
  35. E. A. Rohlfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited