OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6537–6544

Soot particle disintegration and detection by two-laser excimer laser fragmentation fluorescence spectroscopy

Christopher B. Stipe, Donald Lucas, Catherine P. Koshland, and Robert F. Sawyer  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6537-6544 (2005)
http://dx.doi.org/10.1364/AO.44.006537


View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-laser technique is used to study laser–particle interactions and the disintegration of soot by high-power UV light. Two separate 20 ns laser pulses irradiate combustion-generated soot nanoparticles with 193 nm photons. The first laser pulse, from 0 to 14.7 J/cm2, photofragments the soot particles and electronically excites the liberated carbon atoms. The second laser pulse, held constant at 13 J/cm2, irradiates the remaining particle fragments and other products of the first laser pulse. The atomic carbon fluorescence at 248 nm produced by the first laser pulse increases linearly with laser fluence from 1 to 6 J/cm2. At higher fluences the signal from atomic carbon saturates. The carbon fluorescence from the second laser pulse decreases as the fluence from the first laser increases, suggesting that the particles fully disintegrate at high laser fluences. We use an energy balance parameter, called the photon/atom ratio, to aid in understanding laser–particle interactions. These results help define the regimes where photofragmentation fluorescence methods quantitatively measure total soot concentrations.

© 2005 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

History
Original Manuscript: November 23, 2004
Revised Manuscript: May 25, 2005
Manuscript Accepted: May 27, 2005
Published: November 1, 2005

Citation
Christopher B. Stipe, Donald Lucas, Catherine P. Koshland, and Robert F. Sawyer, "Soot particle disintegration and detection by two-laser excimer laser fragmentation fluorescence spectroscopy," Appl. Opt. 44, 6537-6544 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6537

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited