OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6593–6598

Detection of high-temperature water vapor at 940 nm with vertical-cavity surface-emitting lasers

Heidi Cattaneo and Rolf Hernberg  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6593-6598 (2005)
http://dx.doi.org/10.1364/AO.44.006593


View Full Text Article

Acrobat PDF (286 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A vertical-cavity surface-emitting laser was used to study the absorption of water vapor in the 940 nm region. Measurements for several absorption lines within the 2 ν13 vibrational band were performed. Line strengths at room temperature and in a heated absorption cell over the temperature range of 420–970 K were obtained. The line strength values were in good agreement with simulations based on the values of the HITRAN 2004 database. The measurements also showed that water vapor transitions near 940 nm are suitable for sensitive temperature determination.

© 2005 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Citation
Heidi Cattaneo and Rolf Hernberg, "Detection of high-temperature water vapor at 940 nm with vertical-cavity surface-emitting lasers," Appl. Opt. 44, 6593-6598 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6593


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.  9, 545–562 (1998). [CrossRef]
  2. M. P. Arroyo and R. K. Hanson, “Absorption measurement of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt.  32, 6104–6116 (1993).
  3. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst.  28, 587–593 (2000).
  4. B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection in GaAsP diode laser,” Appl. Opt.  38, 1506–1512 (1999).
  5. H. Teichert, T. Fernholtz, and V. Ebert, “Simultaneous in situ measurements of CO, H2O and gas temperature in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt.  42, 2043–2051 (2003).
  6. D. C. Hovde and C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt.  36, 1135–1138 (1997).
  7. E. Schlosser, T. Fernholz, H. Teichert, and V. Ebert, “In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta Part A  58, 2347–2359 (2002).
  8. V. Weldon, J. O'Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, J. C. Conolly, N. A. Morris, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol.  38, 325–329 (1997). [CrossRef]
  9. H. P. Zappe, F. Monti di Sopra, H.-P. Gauggel, K. H. Gulden, R. Hövel, and M. Moser, “High spectral-purity VCSELs for spectroscopy and sensors,” in Laser Diodes and LEDs in Industrial, Measurement, Imaging, and Sensors Applications II; Testing, Packaging, and Reliability of Semiconductor Lasers V, G. T. Burnham, X. He, K. J. Linden, and S. C. Wang, eds., Proc. SPIE  3945, 106–116 (2000). [CrossRef]
  10. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt.  40, 4404–4415 (2001).
  11. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B  72, 127–135 (2001).
  12. G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm,” J. Cryst. Growth  251, 748–753 (2003). [CrossRef]
  13. M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M.-C. Amann, R. Shau, and J. Rosskopf, “Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 mm with up to 5 MHz repetition rate,” Meas. Sci. Technol.  14, 101–106 (2003). [CrossRef]
  14. G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.-C. Amann, and F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54 μm,” Appl. Phys. B  76, 603–608 (2003).
  15. H. Cattaneo, T. Laurila, and R. Hernberg, “VCSEL based detection of water vapor near 940 nm,” Spectrochim. Acta Part A  60, 3269–3275 (2004).
  16. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer , 10.1016/jqsrt.2004.10.008 (to be published).
  17. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Cjance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer  82, 5–44 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited