Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves

Not Accessible

Your library or personal account may give you access

Abstract

A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature measurements in shock tubes using a laser-based absorption technique

Albert Y. Chang, Edward C. Rea, and Ronald K. Hanson
Appl. Opt. 26(5) 885-891 (1987)

Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy

Marcel Nations, Shengkai Wang, Christopher S. Goldenstein, Kai Sun, David F. Davidson, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 54(29) 8766-8775 (2015)

Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson
Appl. Opt. 53(9) 1938-1946 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved