OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6599–6605

Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves

Matthew A. Oehlschlaeger, David F. Davidson, and Jay B. Jeffries  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6599-6605 (2005)
http://dx.doi.org/10.1364/AO.44.006599


View Full Text Article

Enhanced HTML    Acrobat PDF (1124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

© 2005 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature

History
Original Manuscript: January 7, 2005
Revised Manuscript: April 22, 2005
Manuscript Accepted: May 17, 2005
Published: November 1, 2005

Citation
Matthew A. Oehlschlaeger, David F. Davidson, and Jay B. Jeffries, "Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves," Appl. Opt. 44, 6599-6605 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6599


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).
  2. A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature measurements in shock tubes using a laser-based absorption technique,” Appl. Opt. 26, 885–891 (1987). [CrossRef] [PubMed]
  3. D. F. Davidson, A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Continuous wave laser absorption techniques for gas dynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991). [CrossRef] [PubMed]
  4. A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurement of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3021 (1991). [CrossRef] [PubMed]
  5. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated flows,” Appl. Opt. 32, 6090–6102 (1993). [CrossRef] [PubMed]
  6. C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002). [CrossRef]
  7. H. Okabe, The Photochemistry of Small Molecules (Wiley, 1978).
  8. M. A. Oehlschlaeger, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption cross-sections of hot carbon dioxide,” Chem. Phys. Lett. 399, 490–495 (2004). [CrossRef]
  9. J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, R. K. Hanson, “UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications,” Proc. Combust. Inst. 30, 1591–1599 (2005). [CrossRef]
  10. D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson, “Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements,” Proc. Combust. Inst. 30, 2799–2870 (2005). [CrossRef]
  11. M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of oxygen and carbon dioxide from vibrationally excited states at high temperatures,” Chem. Phys. Lett. 176, 519–525 (1991). [CrossRef]
  12. R. J. Jensen, R. D. Guettler, J. L. Lyman, “The ultraviolet absorption spectrum of hot carbon dioxide,” Chem. Phys. Lett. 277, 356–360 (1997). [CrossRef]
  13. M. Ogawa, “Absorption cross sections of oxygen and carbon dioxide continua in the Schumann and far UV regions,” J. Chem. Phys. 54, 2550–2556 (1971). [CrossRef]
  14. B. R. Lewis, J. H. Carver, “Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1970 angstroms,” J. Quant. Spectrosc. Radiat. Transfer 30, 297–309 (1983). [CrossRef]
  15. E. L. Petersen, R. K. Hanson, “Nonideal effects behind reflected shock waves in a high-pressure shock tube,” Shock Waves 10, 405–420 (2001). [CrossRef]
  16. W. G. Bessler, C. Schulz, V. Sick, J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), paper p105; http://www.lifsim.com .
  17. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, “GRI-Mech 3.0” (2003), http://www.me.berkeley.edu/gri_mech/ .
  18. E. L. Petersen, D. F. Davidson, R. K. Hanson, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” J. Power Prop. 15, 82–91 (1999). [CrossRef]
  19. D. F. Davidson, R. K. Hanson, “Interpreting shock tube ignition data,” Int. J. Chem Kinet. 36, 510–523 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited