OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6616–6626

Hydroxyl tagging velocimetry method optimization: signal intensity and spectroscopy

Lubomir A. Ribarov, Shengteng Hu, Joseph A. Wehrmeyer, and Robert W. Pitz  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6616-6626 (2005)
http://dx.doi.org/10.1364/AO.44.006616


View Full Text Article

Acrobat PDF (831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The previously demonstrated nonintrusive time-of-flight molecular velocity tagging method, hydroxyl tagging velocimetry (HTV), has shown the capability of operating both at room temperature and in flames. Well-characterized jets of either air (nonreacting cases) or hydrogen–air diffusion flames (reacting cases) are employed. A 7×7 OH line grid is generated first through the single-photon photodissociation of H2O by a ∼193 nm pulsed narrowband ArF excimer laser and is subsequently revealed by a read laser sheet through fluorescence caused by A<sup>2</sup>Σ+(v′=3) ← X<sup>2</sup>Π<sub>i</sub>(v'=0), A<sup>2</sup>Σ+(v′=1) ← X<sup>2</sup>Π<sub>i</sub>(v'=0), or A<sup>2</sup>Σ+(v′=0) ← X<sup>2</sup>Π<sub>i</sub>(v'=0) pumping at ∼248, ∼282, or ∼308 nm, respectively. A detailed discussion of the spectroscopy and relative signal intensity of these various read techniques is presented, and the implications for optimal HTV performance are discussed.

© 2005 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.2490) Remote sensing and sensors : Flow diagnostics
(280.7250) Remote sensing and sensors : Velocimetry
(300.2530) Spectroscopy : Fluorescence, laser-induced

Citation
Lubomir A. Ribarov, Shengteng Hu, Joseph A. Wehrmeyer, and Robert W. Pitz, "Hydroxyl tagging velocimetry method optimization: signal intensity and spectroscopy," Appl. Opt. 44, 6616-6626 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6616


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, and R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” Appl. Phys. B  74, 175–183 (2002). [CrossRef]
  2. L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids  37, 65–74 (2004). [CrossRef]
  3. L. A. Ribarov, “Nonintrusive molecular velocity measurements in air and reacting flows using hydroxyl tagging velocimetry,” Ph.D. dissertation (Vanderbilt University, 2002).
  4. J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193‐nmH2O photodissociation,” Appl. Opt.  38, 6912–6917 (1999).
  5. R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol.  11, 1259–1271 (2000). [CrossRef]
  6. V. Engel, G. Meijer, A. Bath, P. Andresen, and R. Schinke, “The C˜ → A˜ emission of water: theory and experiment,” J. Chem. Phys.  87, 4310–4314 (1987). [CrossRef]
  7. G. A. Massey and C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron.  QE-20, 454–457 (1984). [CrossRef]
  8. L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, and P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J.  37, 708–714 (1999).
  9. R. K. Lengel and D. R. Crosley, “Energy transfer in A2Σ+OH. II. Vibrational,” J. Chem. Phys.  68, 5309–5324 (1978). [CrossRef]
  10. Q.-V. Nguyen and P. H. Paul, “KrF laser-induced photobleaching effects in O2 planar laser-induced fluorescence signals: experiment and model,” Appl. Opt.  36, 2675–2683 (1997).
  11. J. A. Gray and R. L. Farrow, “Predissociation lifetimes of OHA2Σ+(v′=3) obtained from optical–optical double-resonance linewidth measurements,” J. Chem. Phys.  95, 7054–7060 (1991). [CrossRef]
  12. T. Nielsen, F. Bormann, M. Burrows, and P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OHA2Σ+(v′=2) in atmospheric pressure flames,” Appl. Opt.  36, 7960–7969 (1997).
  13. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, 1996).
  14. J. M. Seitzman, “Quantitative applications of fluorescence imaging in combustions,” Ph.D. dissertation (Stanford University, 1991).
  15. J. M. Seitzman and R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J.  31, 513–519 (1993).
  16. F. Bormann, T. Nielsen, M. Burrows, and P. Andresen, “Single-pulse collision—insensitive picosecond planar laser-induced fluorescence of OHA2Σ+(v′=2) in atmospheric-pressure flames,” Appl. Phys. B  62, 601–607 (1996). [CrossRef]
  17. T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst III, and J. C. McDaniel, Jr., “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Prop. Power  10, 377–381 (1994).
  18. D. R. Crosley and R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X System of OH,” J. Quant. Spectros. Radiat. Transfer.  15, 579–591 (1975). [CrossRef]
  19. J. Luque and D. R. Crosley, “Transition probabilities in the A2Σ+–X2Πi electronic system of OH,” J. Chem. Phys.  109, 439–448 (1998). [CrossRef]
  20. K. R. German, “Radiative and predissociative lifetimes of the v′=0, 1, and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phys.  63, 5252–5255 (1975). [CrossRef]
  21. K. L. Steffens, J. Luque, J. B. Jeffries, and D. R. Crosley, “Transition probabilities in OHA2Σ+–X2Πi: bands with v′=2 and 3,” J. Chem. Phys.  106, 6262–6267 (1997). [CrossRef]
  22. T. M. Quagliaroli, G. Laufer, R. H. Krauss, and J. C. McDaniel, Jr., “Laser selection criteria for OH fluorescence measurements in supersonic combustion test facilities,” AIAA J.  31, 520–527 (1993).
  23. C. P. Gendrich and M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids  22, 67–77 (1996). [CrossRef]
  24. T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, Jr., and G. B. Northam, “Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame  99, 157–173 (1994). [CrossRef]
  25. R. van Harrevelt and M. C. van Hemert, “Photodissociation of water in the à band revisited with new potential energy surfaces,” J. Chem. Phys.  114, 9453–9462 (2001). [CrossRef]
  26. G.-J. Kroes, E. F. van Dishoeck, R. A. Beärda, and M. C. van Hemert, “Photodissociation of CH2. II. Three-dimensional wave packet calculations on dissociations through the first excited triplet state,” J. Chem. Phys.  99, 228–236 (1993). [CrossRef]
  27. O. L. Polyanski, P. Jensen, and J. Tennyson, “The potential energy surface of H216O,” J. Chem. Phys.  105, 6490–6497 (1996). [CrossRef]
  28. P. Andresen, G. S. Ondrey, B. Titze, and E. W. Rothe, “Nuclear and electron dynamics in the photodissociation of water,” J. Chem. Phys.  80, 2548–2569 (1984). [CrossRef]
  29. D. F. Davidson, A. Y. Chang, K. Kohse-Höinghaus, and R. K. Hanson, “High temperature absorption coefficients for O2, NH3, and H2O for broadband ArF excimer laser radiation,” J. Quant. Spectros. Radiat. Transfer  42, 267–278 (1989). [CrossRef]
  30. A. M. Bass and H. P. Broida, “A spectroscopic atlas of the Σ+–Π22 transition of OH,” Natl. Bur. Stand.  (U.S.), Circ.  541, 1–21 (1953).
  31. G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH (fundamental data),” J. Quant. Spectros. Radiat. Transfer  2, 97–199 (1962). [CrossRef]
  32. J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation program (Vers. 1.6),” SRI International Report MP 99-009, (1999) http://www/sri.com/cem/lifbase.
  33. DaVis 6.0 Stereo PIV/PTV Software (LaVision, GmbH), (1999) http://www.LaVision.com.
  34. D. A. V. Kliner and R. L. Farrow, “Measurements of ground-state OH rotational energy-transfer rates,” J. Chem. Phys.  110, 412–422 (1999). [CrossRef]
  35. B. Atakan, J. Heinze, and U. E. Meier, “OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensional measurements exciting the A–X(1,0) transition,” Appl. Phys. B  64, 585–591 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited