OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6644–6652

Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet

Wolfgang Juchmann, Jorge Luque, and Jay B. Jeffries  »View Author Affiliations

Applied Optics, Vol. 44, Issue 31, pp. 6644-6652 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging–diverging nozzle into a reactor. When a trace of methane (<2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-α near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.

© 2005 Optical Society of America

Original Manuscript: January 31, 2005
Revised Manuscript: April 14, 2004
Manuscript Accepted: April 18, 2005
Published: November 1, 2005

Wolfgang Juchmann, Jorge Luque, and Jay B. Jeffries, "Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet," Appl. Opt. 44, 6644-6652 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Kovach, L. Zeatoun, B. Roozbehani, I. Greber, J. C. Angus, “Influence of transport and chemical reaction processes on diamond growth rates, morphology and quality,” in Advances in New Diamond Science and Technology, Proceedings of the Fourth International Conference on New Diamond Science and Technology (Scientific Publishing Division of MYU, Tokyo, 1994), vol. 4, pp. 93–96.
  2. M. Frenklach, “Monte-Carlo simulation of diamond growth by methyl and acetylene reactions,” J. Chem. Phys. 97, 5794–5802 (1992). [CrossRef]
  3. M. Frenklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991). [CrossRef]
  4. J. E. Butler, R. L. Woodin, “Thin film diamond growth mechanisms,” Philos. Trans. R. Soc. London Ser. A 342, 209–224 (1993). [CrossRef]
  5. S. J. Harris, D. G. Goodwin, “Growth on the reconstructed diamond (100) surface,” J. Phys. Chem. 97, 23–28 (1993). [CrossRef]
  6. K. E. Spear, M. Frenklach, “High temperature chemistry of CVD (chemical vapor deposition) diamond growth,” Pure Appl. Chem. 66, 1773–1782 (1994). [CrossRef]
  7. D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry,” J. Appl. Phys. 74, 6888–6894 (1993). [CrossRef]
  8. D. G. Goodwin, “Scaling laws for diamond chemical-vapor deposition. II. Atomic hydrogen transport,” J. Appl. Phys. 74, 6895–6906 (1993). [CrossRef]
  9. P. K. Bachmann, D. Leers, H. Lydtin, “Towards a general concept of diamond chemical vapor deposition,” Diamond Relat. Mater. 1, 1–12 (1991). [CrossRef]
  10. D. G. Goodwin, J. E. Butler, “Theory of diamond chemical vapor deposition,” in Handbook of Industrial Diamond and Diamond Films, M. Prelas, G. Popovicii, K. K. Bigelow eds. (Marcel Dekker, 1998), pp. 527–581.
  11. N. Ohtake, M. Yoshikawa, “Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere,” J. Electrochem. Soc. 137, 717–722 (1990). [CrossRef]
  12. Z. P. Lu, K. Snail, C. Marks, J. Heberlein, E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. Electrochem. Soc. 91–8, 99–106 (1991).
  13. M. H. Loh, M. A. Cappelli, “Supersonic dc-arc jet synthesis of diamond,” Diamond Relat. Mater. 2, 454–461 (1993). [CrossRef]
  14. G. P. Smith, J. B. Jeffries, “Gas phase chemistry in a diamond-depositing dc-arcjet,” Proc. Electrochem. Soc. 91–8, 194–201 (1991).
  15. M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993). [CrossRef]
  16. D. G. Goodwin, “Simulations of high-rate diamond synthesis: methyl as growth species,” Appl. Phys. Lett. 59, 277–279 (1991). [CrossRef]
  17. S. L. Girshick, C. Li, B. W. Yu, H. Han, “Fluid boundary layer effects in atmospheric-pressure plasma diamond film deposition,” Plasma Chem. Plasma Process. 13, 169–187 (1993). [CrossRef]
  18. I. J. Wysong, J. A. Pobst, “Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster,” Appl. Phys. B. 67, 193–205 (1998). [CrossRef]
  19. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993). [CrossRef] [PubMed]
  20. P. V. Storm, M. A. Cappelli, “Arcjet nozzle flow-field characterization by laser-induced fluorescence,” Appl. Opt. 37, 486–495 (1998). [CrossRef]
  21. M. W. Crofton, T. A. Moore, I. D. Boyd, I. Masuda, Y. Gotoh, “Near-field measurement and modeling results for flight-type arcjet: hydrogen atom,” J. Spacecr. Rockets 38, 417–425 (2001). [CrossRef]
  22. K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998). [CrossRef]
  23. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–319 (1994). [CrossRef]
  24. K. C. Smyth, D. R. Crosley, “Detection of minor species with laser-techniques” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 9–68.
  25. D. G. Fletcher, “Arcjet flow properties determined from laser-induced fluorescence of atomic nitrogen,” Appl. Opt. 38, 1850–1858 (1999). [CrossRef]
  26. J. E. M. Goldsmith, Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” Proc. Combust. Soc. 22, 1403–1411 (1989).
  27. J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just, “Determination of absolute hydrogen atom concentrations in low-pressure flames by two-photon laser-excited fluorescence,” Combust. Flame 71, 41–50 (1988). [CrossRef]
  28. L. Schaefer, C. P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991). [CrossRef]
  29. J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, “Quenching of two-photon-excited atomic hydrogen (3s,3d) and atomic oxygen(3p 3P 2, 1, 0) atoms by rare gases and small molecules,” Chem. Phys. Lett. 143, 571–576 (1988). [CrossRef]
  30. J. E. M. Goldsmith, M. Alden, U. Westblom, “Photochemical effects in multiple species fluorescence imaging in hydrogen-nitrous oxide flames,” Appl. Opt. 29, 4852–4859 (1990). [CrossRef] [PubMed]
  31. L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Improvement of two-photon laser-induced fluorescence (LIF) measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639–646 (1997). [CrossRef]
  32. K. Miyazaki, T. Kajwara, K. Uchino, K. Muraoka, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence, J. Vac. Sci. Technol. A 14, 125–131 (1996). [CrossRef]
  33. W. Juchmann, J. Luque, J. B. Jeffries, “Atomic hydrogen concentration in a diamond depositing dc arcjet determined by calorimetry,” J. Appl. Phy. 81, 8052–8056 (1997). [CrossRef]
  34. E. A. Brinkman, K. R. Stalder, J. B. Jeffries, “Electron densities and temperatures in a diamond-depositing direct-current arcjet plasma,” J. Appl. Phys. 81, 1093–1098 (1997). [CrossRef]
  35. E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997). [CrossRef]
  36. J. Luque, W. Juchmann, J. B. Jeffries, “Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor,” Appl. Opt. 36, 3261–3270 (1997). [CrossRef] [PubMed]
  37. J. Luque, W. Juchmann, J. B. Jeffries, “Spatial density distributions of C2, C3, and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet,” J. Appl. Phys. 82, 2072–2081 (1997). [CrossRef]
  38. W. Juchmann, J. Luque, J. B. Jeffries, “Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence,” Appl. Opt. 39, 3704–3711 (2000). [CrossRef]
  39. J. Luque, W. Juchmann, E. A. Brinkmann, J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arc-jet reactor,” J. Vac. Sci. Technol. A 16, 397–408 (1998). [CrossRef]
  40. G. W. Faris, E. A. Brinkman, J. B. Jeffries, “Density measurements in a dc arcjet using scanned beam deflection tomography” Opt. Express 7, 447–460 (2000). [CrossRef] [PubMed]
  41. D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections for atomic oxygen,” Phys. Rev. A. 34, 185–198 (1986). [CrossRef] [PubMed]
  42. U. Meier, K. Kohse-Höinghaus, L. Schafer, C. P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990). [CrossRef] [PubMed]
  43. A. D. Tsrepi, J. R. Dunlop, B. L. Preppernau, T. A. Miller, “Absolute hydrogen-atom concentration profiles in continuous and pulsed rf discharges,” J. Appl. Phys. 72, 2638–2643 (1992). [CrossRef]
  44. K. Niemi, V. Schulz-von der Gathen, H. F. Döbele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D 34, 2330–2335 (2001). [CrossRef]
  45. B. Ganguly, P. W. Parish, “Absolute H atom density measurement in pure methane pulsed discharge,” Appl. Phys. Lett. 84, 4953–4955 (2004). [CrossRef]
  46. M. G. H. Boogaarts, S. Mazouffre, G. J. Brinkman, H. W. P. van der Heijden, P. Vankan, J. A. M. van der Mullen, D. C. Schram, “Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma,” Rev. Sci. Instrum. 73, 73–86 (2002). [CrossRef]
  47. H. F. Dobele, U. Czarnetzki, A. Goehlich, “Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques), Plasma Sources Sci. Technol. 9, 477–491 (2000). [CrossRef]
  48. M. J. Wouters, J. Khachan, I. S. Falconer, B. W. James, “Production and loss of H atoms in a microwave discharge in H2,” J. Phys. D 31, 2004–2012 (1998). [CrossRef]
  49. H. W. P. van der Heijden, M. G. H. Boogaarts, S. Mazouffre, J. A. M. van der Mullen, D. C. Schram, “Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma”, Phys. Rev. E 61, 4402–4409 (2000). [CrossRef]
  50. A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, K. Hassouni, “Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor,” J. Phys. III 6, 1167–1180 (1996).
  51. J. E. M. Goldsmith, R. J. M. Anderson, L. R. Williams, “Time-resolved two-photon-excited fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 15, 78–80 (1990). [CrossRef] [PubMed]
  52. S. Agrup, F. Ossler, M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B. 61, 479–487 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited