OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6660–6672

Quantitative determination of combustion intermediates with cavity ring-down spectroscopy: systematic study in propene flames near the soot-formation limit

Alexander Schocker, Katharina Kohse-Höinghaus, and Andreas Brockhinke  »View Author Affiliations

Applied Optics, Vol. 44, Issue 31, pp. 6660-6672 (2005)

View Full Text Article

Acrobat PDF (506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cavity ring-down spectroscopy (CRDS) was applied in several fuel-rich, one-dimensional, premixed C3H6/O2/Ar flames at 50 mbars (37.5 torr) to measure absolute OH, HCO, and <sup>1</sup>CH2 concentration as well as temperature as a function of stoichiometry. Although these flames near the sooting limit present a complex chemical environment, significant spectral interferences were found to be absent. Specific aspects of the CRDS technique for measurement of temperature and radical concentration profiles are discussed; and the results are analyzed in comparison with flame model simulations.

© 2005 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.1030) Spectroscopy : Absorption

Alexander Schocker, Katharina Kohse-Höinghaus, and Andreas Brockhinke, "Quantitative determination of combustion intermediates with cavity ring-down spectroscopy: systematic study in propene flames near the soot-formation limit," Appl. Opt. 44, 6660-6672 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. I. Glassman, Combustion 2nd ed. (Academic, 1987).
  2. J. A. Miller, M. J. Pilling, and J. Troe, “Unravelling combustion mechanisms through a quantitative understanding of elementary reactions,” Proc. Combust. Inst.  30, 43–88 (2004). [CrossRef]
  3. R. K. Hanson, “Shock tube spectroscopy: advanced instrumentation with a tunable diode laser,” Appl. Opt.  16, 1479–1481 (1977).
  4. J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature-field measurements using planar laser-induced fluorescence,” Opt. Lett.  10, 439–441 (1985).
  5. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt.  40, 4404–4415 (2001).
  6. E. L. Petersen, D. F. Davidson, and R. K. Hanson, “Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures,” Combust. Flame  117, 272–290 (1999). [CrossRef]
  7. C. S. McEnally, L. D. Pfefferle, B. Atakan, and K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames—progress towards closing the fuel gap,” sub-mitted to Prog. Energy. Combust. Sci.
  8. K. C. Smyth, D. R. Crosley, “Detection of minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), Chap. 2, pp. 9–68.
  9. A. Brockhinke and M. A. Linne, “Short-pulse techniques: picosecond fluorescence, energy transfer, and quench-free measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J. B. Jeffries, eds. (Taylor and Francis, 2002), Chap. 5, pp. 128–154.
  10. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci.  20, 203–279 (1994). [CrossRef]
  11. B. Atakan, A. T. Hartlieb, J. Brand and K. Kohse-Höinghaus, “An experimental investigation of premixed fuel-rich low-pressure propene/oxygen/argon flames by laser spectroscopy and molecular-beam mass spectrometry,” Proc. Combust. Inst.  27, 435–444 (1998).
  12. B. Atakan, H. Böhm, and K. Kohse-Höinghaus, “Fuel-rich chemistry and soot precursors,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J.B. Jeffries, eds. (Taylor & Francis, 2002), pp. 289–316.
  13. B. Atakan, A. Lamprecht, and K. Kohse-Höinghaus, “An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene flame,” Combust. Flame  133, 431–440, (2003). [CrossRef]
  14. K. Kohse-Höinghaus, A. Schocker, T. Kasper, M. Kamphus, and A. Brockhinke, “Laser- and mass-spectroscopic investigation of fuel-rich flames,” Z. Phys. Chem.  219, 583–599 (2005).
  15. K.-H. Homann, Fullerenes and soot formation—new pathways to large particles in flames, Angew. Chem. Int. Ed. Engl.  37, 2434–2451 (1998). [CrossRef]
  16. J. A. Miller, “Theory and modeling in combustion chemistry,” Proc. Combust. Inst.  26, 461–480 (1996).
  17. E. Goos and M. Braun-Unkhoff, “DLR-mechanism,” DLR, Stuttgart (personal communication, 2004).
  18. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum.  59, 2544–2551 (1988). [CrossRef]
  19. A. McIlroy and J. B. Jeffries, “Cavity ringdown spectroscopy for concentration measurements,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 98–127.
  20. K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy—an Ultratrace-Absorption Measurement Technique (Oxford U. Press, 1999).
  21. G. Berden, R. Peeters and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem.  19, 565–607 (2000). [CrossRef]
  22. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys.  102, 2708–2717 (1995). [CrossRef]
  23. A. Schocker, A. Brockhinke, K. Bultitude, and P. Ewart, “Cavity ring-down measurements in flames using a single-mode tunable laser system,” Appl. Phys. B  77, 101–108 (2003). [CrossRef]
  24. A. P. Yalin and R. N. Zare, “Effect of laser lineshape on the quantitative analysis of cavity ring-down signals,” Laser Phys.  12, 1065–1072 (2002).
  25. M. Kamphus, K. Kohse-Höinghaus, M. Braun-Unkhoff, and P. Frank, “A REMPI-mass spectrometric and modeling study of small PAH in premixed fuel-rich, low-pressure flame,” to be submitted to Combust. Flame.
  26. A. McIlroy, “Laser studies of small radicals in rich methane flames: OH, HCO, and 1CH2,” Isr. J. Chem.  39, 55–62 (1999).
  27. C. Moreau, E. Therssen, P. Desgroux, J. F. Pauwels, A. Chapput, and M. Barj, “Quantitative measurements of the CH radical in sooting diffusion flames at atmospheric pressure,” Appl. Phys. B  76, 597–602 (2003).
  28. C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J. F. Pauwels, and P. Desgroux, “Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames,” Appl. Phys. B  78, 485–492 (2004). [CrossRef]
  29. C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, and R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst.  29, 2735–2742 (2002).
  30. A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B  70, 435–445 (2000). [CrossRef]
  31. A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Effects of a sampling quartz nozzle on the flame structures of a fuel-rich low-pressure propene flame,” Combust. Flame  121, 610–624 (2000). [CrossRef]
  32. X. Mercier, E. Therssen, J. F. Pauwels, and P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett.  299, 75–83 (1999). [CrossRef]
  33. K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst.  30, 89–123 (2004). [CrossRef]
  34. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett.  217, 112–116 (1994). [CrossRef]
  35. C. B. Dreyer, S. M. Spuler, and M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames,” Comb. Sci. Tech.  171, 163–190 (2001).
  36. G. H. Dieke, and H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spec. Rad. Trans.  2, 97–199 (1962). [CrossRef]
  37. H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame  113, 312–332 (1998). [CrossRef]
  38. W. M. Vaidya, “Spectrum of the flame of ethylene,” Proc. R. Soc. A  147, 513–521 (1934).
  39. G. Herzberg, and D. A. Ramsay, “The 7500 to 4500 Å absorption system of the free HCO radical,” Proc. R. Soc. A  233, 34–54 (1955).
  40. J. W. C. Johns, D. A. Ramsay, and S. H. Priddle, “Electronic absorption spectra of HCO and DCO radicals,” Discuss. Faraday Soc.  35, 90–104 (1963). [CrossRef]
  41. J. M. Brown and D. A. Ramsay, “Axis switching in the A˜2A'−X˜2A′ transition of HCO: determination of molecular geometry,” Can. J. Phys.  53, 2232–2241 (1975).
  42. J. B. Jeffries, D. R. Crosley, I. J. Wysong, and G. P. Smith, “Laser-induced fluorescence detection of HCO in a low-pressure flame,” Proc. Combust. Inst.  23, 1847–1854 (1990).
  43. E. W. G. Diau, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “HCO concentration in flames via quantitative laser-induced fluorescence,” Proc. Combust. Inst.  27, 453–460 (1998).
  44. S. Cheskis, “Intracavity laser-absorption spectroscopy detection of HCO radicals in atmospheric-pressure hydrocarbon flames,” J. Chem. Phys.  102, 1851–1854 (1995). [CrossRef]
  45. V. A. Lozovsky, S. Cheskis, A. Kachanov, and F. Stoeckel, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys.  106, 8384–8391 (1997). [CrossRef]
  46. V. A. Lozovsky, I. Derzy, and S. Cheskis, “Radical concentration profiles in a low-pressure methane-air flame measured by intracavity laser absorption and cavity ring-down spectroscopy,” Proc. Combust. Inst.  27, 445–452 (1998).
  47. J. J. Scherer and D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett.  265, 169–176 (1997). [CrossRef]
  48. R. Evertsen, J. A. Van Oijen, R. T. E. Hermanns, L. P. H. De Goey, and J. J. ter Meulen, “Measurements of the absolute concentrations of HCO and 1CH2 in a premixed atmospheric flat flame by cavity ringdown spectroscopy,” Combust. Flame  135, 57–64 (2003). [CrossRef]
  49. R. Vasudev and R. N. Zare, “Laser optogalvanic study of HCO A state predissociation, J. Chem. Phys.  76, 5267–5270 (1982). [CrossRef]
  50. A. O. Langford and C. B. Moore, “Reaction and relaxation of vibrationally excited formyl radicals,” J. Chem. Phys.  80, 4204–4210 (1984). [CrossRef]
  51. J. E. Baggott, H. M. Frey, P. D. Lightfoot, and R. Walsh, “The absorption cross section of the HCO radical at 614.59 nm and the rate constant for HCO + HCO to H2CO + CO, Chem. Phys. Lett.  132, 225–230 (1986). [CrossRef]
  52. L. N. Krasnoperov, E. N. Chesnokov, H. Stark, and A. R. Ravishankara, “Elementary reactions of formyl (HCO) radical studied by laser photolysis–transient absorption spectroscopy,” Proc. Combust. Inst.  30, 935–943 (2004). [CrossRef]
  53. L. Serrano-Andrés, N. Forsberg, and P. A. Målmqvist, “Vibronic structure in triatomic molecules: the hydrocarbon flame bands of the formyl radical (HCO). A theoretical study,” J. Chem. Phys.  108, 7202–7216 (1998). [CrossRef]
  54. C. J. Pope and J. A. Miller, “Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels,” Proc. Combust. Inst.  28, 1519–1527 (2000).
  55. A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett.  296, 151–158 (1998). [CrossRef]
  56. L. Prada and J. A. Miller, “Reburning using several hydrocarbon fuels: a kinetic modeling study,” Combust. Sci. Technol.  132, 225–250 (1998).
  57. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, Jr., V. V. Lissiansky, and Z. Qin, GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech/ (2002).
  58. A. D. Sappey, D. R. Crosley, and R. A. Copeland, “Laser-induced fluorescence detection of singlet CH2 in low-pressure methane oxygen flames,” Appl. Phys. B  50, 463–472 (1990). [CrossRef]
  59. S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov, and F. Stoeckel, “Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames,” Chem. Phys. Lett.  277, 423–429 (1997). [CrossRef]
  60. I. Derzy, V. A. Lozovsky, and S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames,” Chem. Phys. Lett.  313, 121–128 (1999). [CrossRef]
  61. G. Herzberg and J. W. C. Johns, “The spectrum and structure of singlet CH2,” Proc. R. Soc. A  295, 107–128 (1966).
  62. I. Garcia-Moreno and C. B. Moore, “Spectroscopy of methylene: Einstein coefficients for CH (b̃1B1−α̃1A1) transitions,” J. Chem. Phys.  99, 6429–6435 (1993). [CrossRef]
  63. R. C. Hilborn, “Einstein coefficients, cross-sections, f values, dipole-moments, and all that,” Am. J. Phys.  50, 982–986 (1982). [CrossRef]
  64. H. Petek, D. J. Nesbitt, D. C. Darwin, C. B. Moore, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: the analysis of the b˜B1 state,” J. Chem. Phys.  86, 1172–1188 (1987). [CrossRef]
  65. H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, and D. A. Ramsay, “Visible absorption and magnetic-rotation spectroscopy of 1CH2: analysis of the 1A1 state and the 1A1–3B1 coupling,” J. Chem. Phys.  86, 1189–1205 (1987). [CrossRef]
  66. D. C. Comeau, I. Shavitt, P. Jensen, and P. R. Bunker, “An ab initio determination of the potential-energy surfaces and rotation vibration energy-levels of methylene in the lowest triplet and singlet-states and the singlet triplet splitting,” J. Chem. Phys.  90, 6491–6500 (1989). [CrossRef]
  67. R. J. Kee, F. M. Rupley, and J. Miller, “CHEMKIN-II: a Fortran package for the analysis of gas-phase chemical kinetics,” Sandia National Laboratory Report SAND89-8009B (1982).
  68. R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames, Sandia National Laboratories Rep. SAND85-8240 (Sandia National Laboratories, 1985).
  69. K. Hoyermann, F. Mauss, and T. Zeuch, “A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flame,” Phys. Chem. Chem. Phys.  6, 3824–3835 (2004). [CrossRef]
  70. H. Wang and M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame  110, 173–221 (1997). [CrossRef]
  71. H. Richter, W. J. Grieco, and J. B. Howard, “Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames,” Combust. Flame  119, 1–22 (1999). [CrossRef]
  72. H. Böhm, M. Braun-Unkhoff, and P. Frank, “Investigations on initial soot formation at high pressures,” Prog. Comp. Fluid Dyn.  3, 145–150 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited