OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6701–6711

Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

Jonathan T. C. Liu, Gregory B. Rieker, Jay B. Jeffries, Mark R. Gruber, Campbell D. Carter, Tarun Mathur, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6701-6711 (2005)
http://dx.doi.org/10.1364/AO.44.006701


View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34–1.47 μm spectral region (2v1 and v1 + v3 overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations.

© 2005 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

History
Original Manuscript: February 8, 2005
Revised Manuscript: April 27, 2005
Manuscript Accepted: May 17, 2005
Published: November 1, 2005

Citation
Jonathan T. C. Liu, Gregory B. Rieker, Jay B. Jeffries, Mark R. Gruber, Campbell D. Carter, Tarun Mathur, and Ronald K. Hanson, "Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor," Appl. Opt. 44, 6701-6711 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. T. Curran, “Scramjet engines: the first forty years,” J. Propulsion and Power 17, 1138–1148 (2001). [CrossRef]
  2. A. O’Keefe, J. J. Scherer, J. B. Paul, “CW-integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999). [CrossRef]
  3. J. A. Silver, D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999). [CrossRef]
  4. J. T. C. Liu, R. K. Hanson, J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2 using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002). [CrossRef]
  5. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef] [PubMed]
  6. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–793 (1996). [CrossRef]
  7. E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control and monitoring using a multiplexed diode-laser sensor system,” Proc. Combust. Inst. 26, 2851–2858 (1996). [CrossRef]
  8. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  9. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “A NIR-diode laser spectrometer with closed-loop alignment control for simultaneous in-situ-detection of multiple species and temperature in a gas-fired power-plant for active combustion control purposes,” Proc. Combust. Inst. 28, 423–430 (2000). [CrossRef]
  10. D. Richter, D. G. Lancaster, F. K. Tittel, “Development of an automated diode laser based multicomponent gas sensor,” Appl. Opt. 39, 4444–4450 (2000). [CrossRef]
  11. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proce. Combust. Inst. 28, 587–594 (2000). [CrossRef]
  12. M. A. Allen, E. R. Furlong, R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hoeinghaus, J. B. Jeffries, eds. (Taylor and Francis, 2002), pp. 479–498.
  13. H. Teichert, T. Fernholtz, V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003). [CrossRef] [PubMed]
  14. J. T. C. Liu, J. B. Jeffries, R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511 (2004). [CrossRef]
  15. G. J. Harris, S. Viti, H. Y. Mussa, J. Tennyson, “Calculated high-temperature partition function and related thermodynamic data for H2O,” J. Chem. Phys. 9, 7197–7204 (1998). [CrossRef]
  16. R. R. Gamache, S. Kennedy, R. Hawkins, L. S. Rothman, “Total internal partition sums for molecules in the terrestrial atmosphere,” J. Mol. Structure 517–518, 407–425 (2000). [CrossRef]
  17. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates of 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  18. http://cfa-www.harvard.edu/hitran/ .
  19. X. Liu, X. Zhou, J. B. Jeffries, R. K. Hanson, “Experimental study of H2O spectroscopic parameters in the near-IR,” paper AIAA-2005-0829, presented at the Forty-Third AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10–13 January 2005.
  20. H. Wahlquist, “Modulation broadening of unsaturated lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961). [CrossRef]
  21. G. V. H. Wilson, “Modulation broadening of NMR and ESR line shapes,” J. Appl. Phys. 34, 3276–3285 (1963). [CrossRef]
  22. R. Arndt, “Analytical line shapes for lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  23. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  24. D. S. Bomse, A. S. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  25. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992). [CrossRef] [PubMed]
  26. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef] [PubMed]
  27. P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999). [CrossRef]
  28. S. Schilt, L. Thevenaz, P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728–6738 (2003). [CrossRef] [PubMed]
  29. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef] [PubMed]
  30. J. A. Silver, D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999). [CrossRef]
  31. T. Aizawa, “Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases,” Appl. Opt. 40, 4894–4903 (2001). [CrossRef]
  32. S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. B 19, 477–484 (2001). [CrossRef]
  33. D. C. Hovde, J. T. Hodges, G. E. Scace, J. A. Silver, “Wavelength-modulation laser hydrometer for ultrasensitive detection of water vapor in semiconductor gases,” Appl. Opt. 40, 829–839 (2001). [CrossRef]
  34. T. Fernholtz, H. Teichert, V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,“ Appl. Phys. B 75, 229–236 (2002). [CrossRef]
  35. T. P. Jenkins, P. A. DeBarber, M. Oljaca, “A rugged low-cost diode laser sensor for H2O and temperature applied to a spray flame,” paper AIAA 2003-0585, presented at the Forty-First Aerospace Sciences Meeting and Exhibit of the American Institute of Aeronautics and Astronautics, Reno, Nevada, 6–9 January 2003.
  36. R. A. Baurle, T. Mathur, M. R. Gruber, K. R. Jackson, “A numerical and experimental investigation of a scramjet combustor for hypersonic missile applications,” AIAA paper 98-3121, presented at the Thirty-Fourth AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, Ohio, 13–15 July 1998.
  37. K. Jackson, M. Gruber, T. Mathur, G. Streby, C. Smith, F. Billig, “Calibration of a newly developed direct-connect high-enthalpy supersonic combustion research facility,” AIAA paper 98-1510, presented at the Eighth AIAA International/Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, Virginia, 27–30 April 1998.
  38. T. Mathur, G. Streby, M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, C. Smith, F. Billig, “Supersonic combustion experiments with a cavity-based fuel injector,” AIAA paper 99-2102, presented at the Thirty-Fifth AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, California, 20–24 June 1999.
  39. M. Gruber, K. Jackson, T. Mathur, F. Billig, “Experiments with a cavity-based fuel injector for scramjet applications,” ISABE paper IS-7154, in proceding of the Twenty-Seventh international Symposium on Air Breathing Engines, September 1999.
  40. X. Ouyang, P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989). [CrossRef] [PubMed]
  41. X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003). [CrossRef]
  42. J. T. C. Liu, J. B. Jeffries, R. K. Hanson, S. Creighton, J. A. Lovett, D. T. Shouse, “Diode laser absorption diagnostics for measurements in practical combustion flow fields,” paper AIAA-2003-4581, presented at the Thirty Ninth AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, Alabama, 20–23 July 2003.
  43. S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981). [CrossRef]
  44. S. T. Sanders, J. Wang, J. B. Jeffries, R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001). [CrossRef]
  45. J. T. C. Liu, J. B. Jeffries, R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited