OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6712–6717

Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements

Robert Provencal, Manish Gupta, Thomas G. Owano, Douglas S. Baer, Kenneth N. Ricci, Anthony O'Keefe, and James R. Podolske  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6712-6717 (2005)
http://dx.doi.org/10.1364/AO.44.006712


View Full Text Article

Acrobat PDF (1005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm−1. The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May–June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty <1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

© 2005 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

Citation
Robert Provencal, Manish Gupta, Thomas G. Owano, Douglas S. Baer, Kenneth N. Ricci, Anthony O'Keefe, and James R. Podolske, "Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements," Appl. Opt. 44, 6712-6717 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6712


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. W. Sachse, G. F. Hill, L. O. Wade, and E. P. Condon, “DACOM—A rapid, high sensitivity airborne carbon monoxide monitor,” in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, (American Chemical Society, Washington, D.C., 1978), pp. 590–593.
  2. G. W. Sachse, G. F. Hill, L. O. Wade, and M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res.  92, 2071–2081 (1987).
  3. G. W. Sachse, J. E. Collins, Jr., G. F. Hill, L. O. Wade, L. G. Burney, and J. A. Ritter, “Airborne tunable diode laser sensor for high precision concentration and flux measurements of carbon monoxide and methane,” Proc. SPIE  1433, 157–166 (1991). [CrossRef]
  4. J. Podolske and M. Lowenstein, “Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere,” Appl. Opt.  32, 5324–5333 (1993).
  5. G. Durry, T. Danguy, and I. Pouchet, “Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication laser diodes,” Appl. Opt.  41, 424–433 (2002).
  6. A. C. Stanton, D. S. Bornse, J. A. Silver, D. C. Hovde, and D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorption,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium,R.Grisar, H.Boettner, M.Tacke, and G.Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 31–40.
  7. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, and E. J. Moyer, “Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon or remotely pioloted aircraft platforms,” Appl. Opt.  38, 4609–4622 (1999).
  8. F. G. C. Bijnen, F. J. M Harren, J. H. P. Hackstein, and J. Reuss, “Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles,” Appl. Opt.  35, 5357–5368 (1996).
  9. A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems:performance characteristics and applications in atmospheric studies,” Appl. Phys. B  67, 317–330 (1998). [CrossRef]
  10. C. E. Kolb, J. C. Wormhoudt, and M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural environment,” in Methods in Ecology: Biogenic Trace Gases: Measuring Emissions from Soil and Water, P.A.Matson and R.C.Harris, eds. (Blackwell Scientific, 1995), pp. 259–290.
  11. P. Werle, “Review of recent advances in laser based gas monitors,” Spectrochim. Acta Part A  54, 197–236 (1998).
  12. P. Werle, “Diode-laser sensors for in-situ gas analysis,” in Lasers in Environmental and Life Sciences—Modern Analytical Methods, P.Hering, P.Lay, and S.Stry, eds. (Springer Verlag, 2004), pp. 223–243.
  13. M. S. Zahniser, D. D. Nelson, and C. E. Kolb, “Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) sensors for combustion exhaust pollutant quantification,” in Applied Combustion Diagnostics, K.K.Hoeinghaus and J.B.Jeffries, eds. (Taylor & Francis, 2002), pp. 648–668.
  14. D. S. Baer, J. B. Paul, M. Gupta, and A. O'Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B  75, 261–265 (2002). [CrossRef]
  15. J. B. Paul, J. J. Scherer, A. O'Keefe, L. Lapson, J. G. Anderson, C. Gmachl, F. Capasso, and A. Y. Cho, “Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring,” Proc. SPIE  4577, 1–11 (2001). [CrossRef]
  16. R. K. Hanson, P. A. Kuntz, and C. H. Kruger, “High-resolution spectroscopy of combustion gases using a tunable infrared diode laser,” Appl. Opt.  16, 2045–2048 (1977).
  17. P. L. Varghese and R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer  26, 339–347 (1981). [CrossRef]
  18. S. M. Schoenung and R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol.  24, 227–237 (1981).
  19. P. L. Varghese and R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc.  88, 234–235 (1981). [CrossRef]
  20. S. M. Schoenung and R. K. Hanson, “Temporally and spatially resolved measurements of fuel mole fraction in a turbulent CO diffusion flame,” in Nineteenth Symposium on Combustion (The Combustion Institute, 1982), pp. 449–458.
  21. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ measurements of CO using diode laser absorption near 2.3 μm,” Appl. Opt.  39, 5579–5589 (2000).
  22. E. R. Furlong, D. S. Baer, and R. K. Hanson, “Combustion control and monitoring using a multiplexed diode-laser sensor system,” in Twenty-sixth Symposium on Combustion (The Combustion Institute, 1996), pp. 2851–2858.
  23. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2 and CH4 in combustion flows,” Appl. Opt.  36, 8745–8752 (1997).
  24. R. M. Mihalcea, D. S. Baer, R. K. Janson, “Diode-laser absorption sensor system for measurements of combustion pollutants,” Meas. Sci. Technol.  9, 327–38 (1998). [CrossRef]
  25. E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive combustion control using diode-laser absorption sensors,” in Twenty-Seventh Symposium on Combustion (The Combustion Institute, 1998).
  26. S. I. Chou, D. S. Baer, R. K. Hanson, W. K. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption Spectroscopy,” J. Vac. Sci. Technol. A  19, 477–484 (2001). [CrossRef]
  27. M. Gupta, T. Owano, D. S. Baer, A. O'Keefe, and S. Williams, “Quantitative determination of singlet oxygen density and temperature for oxygen-iodine laser applications” Chem. Phys. Lett.  400, 42–46 (2004). [CrossRef]
  28. S. Williams, M. Gupta, T. Owano, D. S. Baer, A. O'Keefe, D. R. Yarkony, and S. Matsika, “Quantitative detection of singlet O2 by cavity-enhanced absorption,” Opt. Lett.  29, 1066–1068 (2004). [CrossRef]
  29. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt.  34, 3336–3351 (1995).
  30. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt.  31, 707–717 (1992).
  31. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum.  59, 2544–2551 (1988). [CrossRef]
  32. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.  69, 3763–3769 (1998). [CrossRef]
  33. A. O'Keefe, “Integrated cavity output analysis of ultra weak absorptions”, Chem. Phys. Lett.  293, 331–336 (1998). [CrossRef]
  34. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high finesse optical cavity and off-axis alignment,” Appl. Opt.  40, 4904–4910 (2001).
  35. D. S. Baer, J. B. Paul, M. Gupta, and A. O'Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B.  75, 261–265 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited