OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6718–6728

Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry

Tonghun Lee, Wolfgang G. Bessler, Helmut Kronemayer, Christof Schulz, and Jay B. Jeffries  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6718-6728 (2005)
http://dx.doi.org/10.1364/AO.44.006718


View Full Text Article

Acrobat PDF (683 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An accurate temperature measurement technique for steady, high-pressure flames is investigated using excitation wavelength-scanned laser-induced fluorescence (LIF) within the nitric oxide (NO) A–X(0,0) band, and demonstration experiments are performed in premixed methane/air flames at pressures between 1 and 60 bars with a fuel/air ratio of 0.9. Excitation spectra are simulated with a computational spectral simulation program (LIFSim) and fit to the experimental data to extract gas temperature. The LIF scan range was chosen to provide sensitivity over a wide temperature range and to minimize LIF interference from oxygen. The fitting method is robust against elastic scattering and broadband LIF interference from other species, and yields absolute, calibration-free temperature measurements. Because of loss of structure in the excitation spectra at high pressures, background signal intensities were determined using a NO addition method that simultaneously yields nascent NO concentrations in the postflame gases. In addition, fluorescence emission spectra were also analyzed to quantify the contribution of background signal and to investigate interference in the detection bandwidth. The NO-LIF temperatures are in good agreement with intrusive single-color pyrometry. The proposed thermometry method could provide a useful tool for studing high-pressure flame chemistry as well as provide a standard to evaluate and validate fast-imaging thermometry techniques for practical diagnostics of high-pressure combustion systems.

© 2005 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(280.2470) Remote sensing and sensors : Flames
(300.2530) Spectroscopy : Fluorescence, laser-induced

Citation
Tonghun Lee, Wolfgang G. Bessler, Helmut Kronemayer, Christof Schulz, and Jay B. Jeffries, "Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry," Appl. Opt. 44, 6718-6728 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6718


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. V. Heitor and A. L. N. Moreira, “Thermocouples and sample probes for combustion studies,” Prog. Energy Combust. Sci.  19, 259–278 (1993). [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  3. J. Wolfrum, “Lasers in combustion: from basic theory to practical devices,” Proc. Combust. Inst.  27, 1–41 (1998).
  4. W. P. Stricker, “Measurements of temperature in laboratory flames and practical devices,” in Applied Combustion Diagnostics, K.Kohse-Höinghaus and J.B.Jeffries, eds. (Taylor and Francis, 2002).
  5. N. M. Laurendeau, “Temperature measurements by light scattering methods,” Prog. Energy Combust. Sci.  14, 147–170 (1988). [CrossRef]
  6. D. A. Greenhalgh, Advances in Non-Linear Spectroscopy (Wiley, 1988).
  7. L. P. Goss, Instrumentation for Flows with Combustion (Academic, 1993).
  8. R. K. Hanson, “Temperature measurement technique for high-temperature gases using a tunable diode laser,” Appl. Opt.  17, 2477–2480 (1978).
  9. R. W. Dibble and R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst.  18, 1489–1499 (1981).
  10. A. Orth, V. Sick, and J. Wolfrum, “Laser-diagnostic multi-species imaging in strongly swirling natural gas flames,” Proc. Combust. Inst.  25, 143–150 (1994).
  11. A. Anderson, The Raman Effect (Marcel Dekker, 1971).
  12. J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett.  10, 439–441 (1985).
  13. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt.  41, 3547–3557 (2002).
  14. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt.  42, 2031–2042 (2003).
  15. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes,” Appl. Opt.  42, 4922–4936 (2003).
  16. W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B  78, 519–533 (2004). [CrossRef]
  17. H. Kronemayer, I. Düwel, and C. Schulz, “Temperature imaging in spray flames,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).
  18. M. Hofmann, H. Kronemayer, B. F. Kock, H. Jander, and C. Schulz, “Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures,” presented at the European Combustion Meeting (Louvain-la-Neuve, Belgium, 2005).
  19. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett.  375, 344–349 (2003). [CrossRef]
  20. M. Hofmann, W. G. Bessler, C. Schulz, and H. Jander, “Laser-induced incandescence (LII) for soot diagnostics at high-pressure,” Appl. Opt.  42, 2052–2062 (2003).
  21. A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B  70, 435–445 (2000). [CrossRef]
  22. M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, and Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B  42, 119–126 (1999).
  23. M. Yorozu, Y. Okada, and A. Endo, “Two dimensional rotational temperature measurement by multiline laser induced fluorescence of nitric oxide in combustion flame,” Opt. Rev.  3, 293–298 (1996). [CrossRef]
  24. E. A. Brinkman, G. A. Raiche, M. S. Brown, and J. B. Jeffries, “Optical diagnostics for temperature measurements in a dc arcjet reactor used for diamond deposition,” Appl. Phys. B  64, 689–697 (1997). [CrossRef]
  25. A. O. Vyrodov, J. Heinze, M. Dillman, U. E. Meier, and W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B  61, 409–414 (1995). [CrossRef]
  26. W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute, Chicago, 16–19 March 2003, paper P105, http://www.lifsim.com.
  27. J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, and T. B. Settersten, “Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra,” AIAA Journal  43, 458–464 (2005).
  28. M. D. DiRosa and R. K. Hanson, “Collision broadening and shift of NOγ (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer  52, 515–529 (1994). [CrossRef]
  29. G. Herzberg, Spectra of Diatomic Molecules (Krieger, 1950).
  30. M. D. DiRosa, K. G. Klavuhn, and R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure Flames,” Combust. Sci. Technol.  118, 257–283 (1996).
  31. C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, and R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst.  29, 2725–2742 (2002).
  32. C. Schulz, V. Sick, U. E. Meier, J. Heinze, and W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt.  38, 1434–1443 (1999).
  33. W. H. Press, W. T. Vettering, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).
  34. B. A. Williams, and J. W. Fleming, “Comparative species concentrations in CH4/O4/Ar flames doped with N2O, NO and NO2,” Combust. Flame  98, 93–106 (1994). [CrossRef]
  35. P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” Proc. Combust. Inst.  27, 1377–1384 (1998).
  36. J. H. Bromly, F. J. Barnes, S. Muris, X. You, and B. S. Haynes, “Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane,” Comb. Sci. Tech.  115, 259–296 (1996).
  37. W. Reynolds, Stanjan: Chemical Equilibrium Solver (Stanford University, 1987).
  38. Y. Zeldovich, “The oxidation of nitrogen in combustion and explosion,” Acta Physicochimica USSR  21, 577–628 (1946).
  39. C. T. Bowman, “Control of combustion-generated nitrogen oxide emission: technology driven by regulation,” Proc. Combust. Inst.  24, 859–878 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited