OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6729–6740

Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor

Terrence R. Meyer, Sukesh Roy, Thomas N. Anderson, Joseph D. Miller, Viswanath R. Katta, Robert P. Lucht, and James R. Gord  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6729-6740 (2005)
http://dx.doi.org/10.1364/AO.44.006729


View Full Text Article

Enhanced HTML    Acrobat PDF (358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diode-laser-based sum-frequency generation of ultraviolet (UV) radiation at 313.5 nm was utilized for high-speed absorption measurements of OH mole fraction and temperature at rates up to 20 kHz. Sensor performance was characterized over a wide range of operating conditions in a 25.4 mm path-length, steady, C2H4–air diffusion flame through comparisons with coherent anti-Stokes Raman spectroscopy (CARS), planar laser-induced fluorescence (PLIF), and a two-dimensional numerical simulation with detailed chemical kinetics. Experimental uncertainties of 5% and 11% were achieved for measured temperatures and OH mole fractions, respectively, with standard deviations of <3% at 20 kHz and an OH detection limit of <1 part per million in a 1 m path length. After validation in a steady flame, high-speed diode-laser-based measurements of OH mole fraction and temperature were demonstrated for the first time in the unsteady exhaust of a liquid-fueled, swirl-stabilized combustor. Typical agreement of ~5% was achieved with CARS temperature measurements at various fuel/air ratios, and sensor precision was sufficient to capture oscillations of temperature and OH mole fraction for potential use with multiparameter control strategies in combustors of practical interest.

© 2005 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(280.2470) Remote sensing and sensors : Flames
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

History
Original Manuscript: February 18, 2005
Revised Manuscript: June 14, 2005
Manuscript Accepted: June 28, 2005
Published: November 1, 2005

Citation
Terrence R. Meyer, Sukesh Roy, Thomas N. Anderson, Joseph D. Miller, Viswanath R. Katta, Robert P. Lucht, and James R. Gord, "Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor," Appl. Opt. 44, 6729-6740 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. N. Najm, P. H. Paul, C. J. Mueller, P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame 113, 312–332 (1998). [CrossRef]
  2. P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999). [CrossRef]
  3. E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988). [CrossRef] [PubMed]
  4. D. B. Oh, “Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection,” Opt. Lett. 20, 100–102 (1995). [CrossRef] [PubMed]
  5. J. T. C. Liu, J. B. Jeffries, R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004). [CrossRef] [PubMed]
  6. X. Zhou, J. B. Jeffies, R. K. Hanson, G. Li, E. J. Gutmark, “Rapid measurements of gas temperature in a swirl-stabilized flame,” presented at the 2005 Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 20–23 March 2005.
  7. M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998). [CrossRef]
  8. T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, J. R. Gord, “Diode-laser based ultraviolet-absorption sensor for high-speed detection of the hydroxyl radical,’” Opt. Lett. 30, 1321–1323 (2005). [CrossRef] [PubMed]
  9. S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002). [CrossRef]
  10. SNLO nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185–1423, USA, through www.sandia.gov/imrl/XWEB1128/xxtal.htm .
  11. T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, L. Flamand, “Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor,” Appl. Opt. 44, 1491–1502 (2005). [CrossRef] [PubMed]
  12. R. Storn, K. Price, “Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim.11, 341–359 (1997); source code available from www.icsi.berkeley.edu/~storn/code.html . [CrossRef]
  13. S. R. Turns, An Introduction to Combustion: Concepts and Applications, 2nd ed. (McGraw-Hill, New York, 2000).
  14. M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge, “Demonstration of temperature and OH mole fraction diagnostic in SiH4/H2/O2/Ar flames using narrow-line UV OH absorption spectroscopy,” Proc. Combust. Instit. 29, 2635–2643 (2002). [CrossRef]
  15. E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2∑+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987). [CrossRef]
  16. E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2∑+←X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989). [CrossRef]
  17. W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2∑+–X2Π (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993). [CrossRef]
  18. M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002). [CrossRef]
  19. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004). [CrossRef]
  20. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997). [CrossRef]
  21. T. R. Meyer, S. Roy, R. P. Lucht, J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2–O2–N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005). [CrossRef]
  22. T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, J. R. Gord, “Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames,” Appl. Opt. 44, 445–454 (2005). [CrossRef] [PubMed]
  23. V. R. Katta, W. M. Roquemore, “On the structure of a stretched/compressed laminar flamelet: influence of preferential diffusion,” Combust. Flame 100, 61–70 (1995). [CrossRef]
  24. H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 110, 173–221 (1997). [CrossRef]
  25. V. R. Katta, L. P. Goss, W. M. Roquemore, “Numerical investigations of transitional H2/N2 jet diffusion flames,” AIAA J. 32, 84–94 (1994). [CrossRef]
  26. V. R. Katta, L. P. Goss, W. M. Roquemore, “Simulation of vertical structures in a jet diffusion flame,” Int. J. Num. Methods Heat Fluid Flow 4, 413–424 (1994). [CrossRef]
  27. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Dordrecht, The Netherlands, 1996).
  28. S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004). [CrossRef]
  29. P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef] [PubMed]
  30. X. Ouyang, P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989). [CrossRef] [PubMed]
  31. S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P.-E. Bengtsson, J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29, 1843–1845 (2004). [CrossRef] [PubMed]
  32. G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, T. Walther, “OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser,” Opt. Lett. 26, 1870–1872 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited