OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6752–6761

Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules

Yabai He and Brian J. Orr  »View Author Affiliations

Applied Optics, Vol. 44, Issue 31, pp. 6752-6761 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A cavity ringdown spectrometer, based on a continuous-wave swept-frequency laser, enables efficient, rapid recording of wide-ranging absorption spectra as characteristic spectral signatures of airborne molecules. The rapidly swept laser frequency resonates with the longitudinal modes of the ringdown cavity, effectively sampling the absorption spectrum of an intracavity gas at intervals defined by the cavity’s free spectral range and generating a full absorption spectrum within a single rapid sweep of the widely tunable laser frequency. We report a new analog detection scheme that registers a single data point for each buildup and ringdown decay event without logging details of the full signal waveform; this minimizes demand on digitizer speed and memory depth, reducing the time scale of data processing. This results in a compact, robust, easy-to-use instrument that offers fresh prospects for spectroscopic sensing of trace species in the atmosphere.

© 2005 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6190) Spectroscopy : Spectrometers
(300.6360) Spectroscopy : Spectroscopy, laser

Original Manuscript: February 22, 2005
Revised Manuscript: April 29, 2005
Manuscript Accepted: April 4, 2005
Published: November 1, 2005

Yabai He and Brian J. Orr, "Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules," Appl. Opt. 44, 6752-6761 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kastler, “Atomes à l’intérieur d’um interféromètre Perot–Fabry,” Appl. Opt. 1, 17–24 (1962). [CrossRef]
  2. J. Ye, L.-S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  3. K. W. Busch, M. A. Busch, eds., Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (American Chemical Society, 1999). [CrossRef]
  4. L.-S. Ma, J. Ye, P. Dubé, J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999). [CrossRef]
  5. J. Ye, L.-S. Ma, J. L. Hall, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10−12absorption sensitivity,” in Ref. 3, Chap. 15, pp. 233–253.
  6. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  7. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  8. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  9. D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode-laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997). [CrossRef]
  10. K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998). [CrossRef]
  11. Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998). [CrossRef]
  12. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  13. D. S. Baer, R. K. Hanson, “Diode laser sensors for combustion measurements and control,” in Advances in Chemical Propulsion, G. D. Roy, ed. (CRC Press, 2002), pp. 393–412.
  14. M. G. Allen, E. R. Furlong, R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hohinghaus, J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 479–498.
  15. F. K. Tittel, K. P. Petrov, “Diode laser spectroscopic monitoring of trace gases,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.
  16. M. Tacke, F. Wienhold, R. Grisar, H. Fischer, F.-J. Lübken, “Laser absorption spectroscopy, air monitoring by tunable mid-infrared diode,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Myers, ed. (Wiley, 2000), pp. 1959–1979.
  17. M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001). [CrossRef]
  18. M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001). [CrossRef]
  19. D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997). [CrossRef] [PubMed]
  20. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997). [CrossRef]
  21. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998). [CrossRef]
  22. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999). [CrossRef]
  23. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009–2016 (2000). [CrossRef]
  24. X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases by using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003). [CrossRef]
  25. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996). [CrossRef] [PubMed]
  26. S.-I. Chou, D. S. Baer, R. K. Hanson, “Diode laser absorption measurements of CH3Cl and CH4 near 1.65 μm,” Appl. Opt. 36, 3288–3293 (1997). [CrossRef] [PubMed]
  27. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H.-W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1866 (1999). [CrossRef]
  28. Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000). [CrossRef]
  29. Y. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001). [CrossRef]
  30. Y. He, B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. 48, 591–601 (2001).
  31. Y. He, B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75, 267–280 (2002). [CrossRef]
  32. R. A. Shorten, Y. He, B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust J. Chem. 56, 219–231 (2003). [CrossRef]
  33. Y. He, B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79, 941–945 (2004). [CrossRef]
  34. Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991). [CrossRef]
  35. Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993). [CrossRef]
  36. K. An, C. Yang, R. R. Dasari, M. S. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995). [CrossRef] [PubMed]
  37. J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997). [CrossRef]
  38. M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999). [CrossRef]
  39. Y. He, F. V. Englich, B. J. Orr, “Cavity ringdown spectroscopy with optical-heterodyne detection and miniature external-cavity tunable lasers,” in Conference on Lasers and Electro-Optics (CLEO) 2004, P. Delfyett, F. Heismann, eds., Vol. 96 of Trends in optics and photonics series (Optical Society of America, 2004), pp. CMN2-1–CMN2-2.
  40. J. D. Berger, D. Anthon, “Tunable MEMS devices for optical networks,” Opt. Photon. News, March2003), pp. 42–62. [CrossRef]
  41. Y. He, B. J. Orr are conducting this research.
  42. T. G. Spence, C. C. Harb, B. A. Paldus, J. R. N. Zare, B. Wilke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000). [CrossRef]
  43. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, R. N. Zare, “Stable isotope ratios using cavity ring-down optical spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74, 2003–2007 (2002). [CrossRef] [PubMed]
  44. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2004). [CrossRef]
  45. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998). [CrossRef]
  46. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited