OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6773–6785

A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity

David R. Snelling, Gregory J. Smallwood, Fengshan Liu, Ömer L. Gülder, and William D. Bachalo  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6773-6785 (2005)
http://dx.doi.org/10.1364/AO.44.006773


View Full Text Article

Acrobat PDF (372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced incandescence (LII) has proved to be a useful diagnostic tool for spatially and temporally resolved measurement of particulate (soot) volume fraction and primary particle size in a wide range of applications, such as steady flames, flickering flames, and Diesel engine exhausts. We present a novel LII technique for the determination of soot volume fraction by measuring the absolute incandescence intensity, avoiding the need for ex situ calibration that typically uses a source of particles with known soot volume fraction. The technique developed in this study further extends the capabilities of existing LII for making practical quantitative measurements of soot. The spectral sensitivity of the detection system is determined by calibrating with an extended source of known radiance, and this sensitivity is then used to interpret the measured LII signals. Although it requires knowledge of the soot temperature, either from a numerical model of soot particle heating or experimentally determined by detecting LII signals at two different wavelengths, this technique offers a calibration-independent procedure for measuring soot volume fraction. Application of this technique to soot concentration measurements is demonstrated in a laminar diffusion flame.

© 2005 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics

Citation
David R. Snelling, Gregory J. Smallwood, Fengshan Liu, Ömer L. Gülder, and William D. Bachalo, "A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity," Appl. Opt. 44, 6773-6785 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6773


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Hansen, M. Sato, R. Ruedy, A. Lacis, and V. Oinas, “Global Warming in the twenty-first century: an alternative scenario,” Proc. Nat. Acad. Sci.  97, 9875–9880 (2000). [CrossRef]
  2. M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature  409, 695–697 (2001). [CrossRef]
  3. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. App. Phys.  48, 4473–4479 (1977). [CrossRef]
  4. L. A. Melton, “Soot diagnostics based on laser heating,” Appl Opt.  23, 2201–2208 (1984).
  5. C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in 20th Symposium (International) on Combustion (Combustion Institute, 1984), pp. 1231–1237.
  6. R. L. Vander Wal and K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl Opt.  37, 1607–1616 (1998).
  7. R. L. Vander Wal, and D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt.  34, 1103–1107 (1995).
  8. R. T. Wainner, J. M. Seitzman, and S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J.  37, 738–743 (1999).
  9. R. L., Vander Wal, Z. Zhou, and M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame  105, 462–470 (1996). [CrossRef]
  10. C. R., Shaddix, J. E. Harrington, and K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame  99, 723–732 (1994). [CrossRef]
  11. B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame  97, 384–392 (1994). [CrossRef]
  12. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt.  34, 7083–7091 (1995).
  13. R. L. Vander Wal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B  59, 445–452 (1994). [CrossRef]
  14. N. P. Tait and D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Physi. Chem. 1993.  97, 1619–1625 (1993).
  15. R. Puri, T. F. Richardson, R. J. Santoro, and R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame  92, 320–333 (1993). [CrossRef]
  16. P. E. Bengtsson and M. Alden, “Application of a pulsed laser for soot measurements in premixed flames,” Appl. Phys. B  48, 155–164 (1989). [CrossRef]
  17. D. L. Hofeldt, “Real-time soot concentrationmeasurement technique for engine exhaust streams,” in International Congress and Exposition, SAE 930079 (Society of Automotive Engineers, 1993).
  18. S. Schraml, S. Will, and A. Leipertz, “Simultaneous measurements of soot mass concentration and primary particle size in the exhaust of a DI Diesel engine by time-resolved laser-induced incandescence (TIRE-LII),” SAE 1999-01-0146 (Society of Automotive Engineers, 1999).
  19. D. R. Snelling, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Advanced Non-Intrusive Instrumentation for Propulsion Engines AGARD Conference Proceedings (AGARD, 1997), Vol. 598, pp. 23.21–23.29.
  20. S. Will, S. Schraml and A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in 26th Symposium (International) on Combustion (Combustion Institute, 1996, pp. 2277–2284.
  21. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl Opt.  40, 2443–2452 (2001).
  22. R. L. Vander Wal, T. M. Ticich and A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B  67, 115–123 (1998). [CrossRef]
  23. R. M. Pon and J. P. Hessler, “Spectral emissivity of tungsten: analytic expressions for the 340-nm to 2.6-micron spectral region,” Appl Opt.  23, 975–976 (1984).
  24. R. Jullien, and R. Botet, Aggregation and Fractal Aggregates (World Scientific, 1987).
  25. J. E. Martin and A. J. Hurd, “Scattering from fractals,” J. Appl. Cryst.  20, 61–78 (1987). [CrossRef]
  26. T. L. Farias, M. G. Carvalho, Ü. Ö Köylü, and G. M. Faeth, “A computational study of the absorption and scattering properties of soot,” in Combustion Institute/Eastern Section Fall Technical Meeting  (Combustion Institute, 1993), pp. 394–397.
  27. T. L. Farias, M. G. Carvalho, U. O. Köylü, and G. M. Faeth, “Computational evaluation of approximate Rayleigh–Debye–Gans/fractal-aggregate theory for the absorption and scattering properties of soot,” J. Heat Transfer  117, 152–159 (1995).
  28. M. F. Iskander, S. C. Olson, R. E. Benner, and D. Yoshida, “Optical scattering by metallic and carbon aerosols of high aspect ratio,” Appl Opt.  25, 2514–2520 (1986).
  29. J. Nelson, “Test of a mean field theory for the optics of fractal clusters,” J. Mod. Opt.  36, 1031–1057 (1989).
  30. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophysi. J.  186, 705–714 (1973). [CrossRef]
  31. U. O. Köylü and G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame  89, 140–156 (1992). [CrossRef]
  32. Y. A. Levendis, K. R. Estrada, and H. C. Hottel, “Development of multicolour pyrometers to monitor the transient response of burning carbonaceous particle,” Rev. Sci. Instrum.  63, 3608–3622 (1992). [CrossRef]
  33. F. Liu, B. J. Stagg, D. R. Snelling, and G. J. Smallwood, “Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame” Int. J. Heat Mass Transfer (to be published).
  34. G. J. Smallwood, D. R. Snelling, F. Liu, and Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer  123, 814–818 (2001). [CrossRef]
  35. D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of the laser-induced incandescence: prediction of the excitation intensity,” in Thirty Fourth National Heat Transfer Conference (American Society of Mechanical Engineers, 2000), paper NHTC2000-12132.
  36. D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame  136, 180–190 (2004). [CrossRef]
  37. D. R. Snelling, K. A. Thomson, G. J. Smallwood, and Ö. L. Gülder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl Opt.  38, 2478–2485 (1999).
  38. A. V. Filippov and D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer  43, 127–138 (2000). [CrossRef]
  39. F. Liu, G. J. Smallwood, and D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transfer  93, 301–312 (2005). [CrossRef]
  40. K. Tian, F. Liu, K. A. Thomson, D. R. Snelling, G. J. Smallwood, and D. Wang, “Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame,” Combust. Flame  138, 195–198 (2004). [CrossRef]
  41. C. M. Sorensen, “Light scattering by fractal aggregates: a review,” Aerosol Sci. Technol.  35, 648–687 (2000). [CrossRef]
  42. S. S. Krishnan, K. C. Lin, and G. M. Faeth, “Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer  123, 331–339 (2001). [CrossRef]
  43. D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gülder; E. J. Weckman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J.  40, 1789–1795 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited