OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6786–6795

Frequency-resolved absorption tomography with tunable diode lasers

Reynaldo Villarreal and Philip L. Varghese  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6786-6795 (2005)
http://dx.doi.org/10.1364/AO.44.006786


View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable diode laser was used for absorption tomography in an axisymmetric atmospheric pressure flat-flame burner. A rapid tomographic inversion algorithm was used to facilitate the many reconstructions at a relatively sparse set of projections typical of laser absorption tomography. Profiles of temperature and CO2 mole fraction were measured simultaneously in methane–air flames. Absorption measurements were made near the R-branch bandhead at 4.17 μm to minimize interferences with other species, while providing good temperature and concentration sensitivity at flame conditions. The procedure showed the advantage of reconstructing detailed spectra at each radial node.

© 2005 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6390) Spectroscopy : Spectroscopy, molecular

History
Original Manuscript: February 23, 2005
Revised Manuscript: July 1, 2005
Manuscript Accepted: July 2, 2005
Published: November 1, 2005

Citation
Reynaldo Villarreal and Philip L. Varghese, "Frequency-resolved absorption tomography with tunable diode lasers," Appl. Opt. 44, 6786-6795 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Hanson, P. A. Kuntz, C. H. Kruger, “High resolution spectroscopy of combustion gases using a tunable ir diode laser,” Appl. Opt. 16, 2045–2048 (1977). [CrossRef] [PubMed]
  2. R. K. Hanson, “Absorption spectroscopy in sooting flames using a tunable diode laser,” Appl. Opt. 19, 482–484 (1980). [CrossRef] [PubMed]
  3. R. K. Hanson, P. L. Varghese, S. Schoenung, P. K. Falcone, “Absorption spectroscopy of combustion gases using a tunable IR diode laser,” in Laser Probes for Combustion Chemistry, D.R. Crosley, ed., ACS Symp. Ser.134, 413–426 (1980). [CrossRef]
  4. L. Galatry, “Simultaneous effect of doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961). [CrossRef]
  5. P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef] [PubMed]
  6. M. Deutsch, I. Beniaminy, “Inversion of Abel’s integral equation for experimental Data,” J. Appl. Phys. 54, 137–143 (1983). [CrossRef]
  7. S. Gueron, M. Deutsch, “A fast Abel inversion algorithm,” J. Appl. Phys. 75, 4313–4318 (1994). [CrossRef]
  8. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered back-projection methods,” Appl. Opt. 31, 1146–1152 (1992). [CrossRef] [PubMed]
  9. M. Ravichandran, F. C. Gouldin, “Determination of temperature and concentration profiles using (a limited number of) absorption-measurements,” Combust. Sci. Technol. 45, 47–64 (1986). [CrossRef]
  10. X. Ouyang, P. L. Varghese, “Selection of spectral lines for combustion diagnostics,” Appl. Opt. 29, 4884–4890 (1990). [CrossRef] [PubMed]
  11. L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992). [CrossRef]
  12. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2400 K temperature range,” Appl. Opt. 27, 3902–3907 (1988). [CrossRef] [PubMed]
  13. R. Villarreal, “Diode laser tomography in flames,” M.S. thesis (Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas, 1994).
  14. X. Ouyang, P. L. Varghese, “Reliable and efficient program for fitting Galatry and Voigt profiles to spectral data on multiple lines,” Appl. Opt. 28, 1538–1545 (1989). [CrossRef] [PubMed]
  15. C. de Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978). [CrossRef]
  16. W. J. Kessler, M. G. Allen, E. Y. Lo, M. F. Miller, “Tomographic reconstruction of air temperature and density profiles using tunable diode laser absorption measurements on O2,” AIAA Paper 95–1953, presented at the 26th AIAA Plasmadynamics and Lasers Conference, San Diego, California, June 1995.
  17. W. J. A. Dahm, S.-J. Chen, J. A. Silver, J. A. Mullin, N. D. Piltch, “Mixture fraction measurements via WMS/ITAC in a microgravity vortex ring diffusion flame,” Proc. Combust. Instit. 29, 2519–2526 (2002). [CrossRef]
  18. J. A. Silver, D. J. Kane, P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995). [CrossRef] [PubMed]
  19. F.-Y. Zhang, T. Fujiwara, K. Komurasaki, “Diode-laser tomography for arcjet plume reconstruction,” Appl. Opt. 40, 957–964 (2001). [CrossRef]
  20. J. A. Silver, Southwest Sciences, Inc., 1570 Pacheco St., Suite E-11, Santa Fe, N.M. 87505 (personal communication).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited