OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 32 — Nov. 10, 2005
  • pp: 6813–6822

Ni–NiO–Ni tunnel junctions for terahertz and infrared detection

Philip C. D. Hobbs, Robert B. Laibowitz, and Frank R. Libsch  »View Author Affiliations


Applied Optics, Vol. 44, Issue 32, pp. 6813-6822 (2005)
http://dx.doi.org/10.1364/AO.44.006813


View Full Text Article

Enhanced HTML    Acrobat PDF (1088 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present complete experimental determinations of the tunnel barrier parameters (two barrier heights, junction area, dielectric constant, and extrinsic series resistance) as a function of temperature for submicrometer Ni–NiO–Ni thin-film tunnel junctions, showing that when the temperature-invariant parameters are forced to be consistent, good-quality fits are obtained between I–V curves and the Simmons equation for this very-low-barrier system (measured ϕ ≈ 0.20 eV). A splitting of ≈10 meV in the barrier heights due to the different processing histories of the upper and lower electrodes is clearly shown, with the upper interface having a lower barrier, consistent with the increased effect of the image potential at a sharper material interface. It is believed that this is the first barrier height measurement with sufficient resolution for this effect to be seen. A fabrication technique that produces high yields and consistent junction behavior is presented as well as the preliminary results of inelastic tunneling spectroscopy at 4 K that show a prominent peak at ∼59 meV, shifted slightly with respect to the expected transverse optic phonon excitation in bulk NiO but consistent with other surface-sensitive experiments. We discuss the implications of these results for the design of efficient detectors for terahertz and IR radiation.

© 2005 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(130.0250) Integrated optics : Optoelectronics
(160.3900) Materials : Metals
(190.4360) Nonlinear optics : Nonlinear optics, devices
(240.7040) Optics at surfaces : Tunneling

ToC Category:
Detectors

History
Original Manuscript: January 21, 2005
Revised Manuscript: April 5, 2005
Manuscript Accepted: May 2, 2005
Published: November 10, 2005

Citation
Philip C. D. Hobbs, Robert B. Laibowitz, and Frank R. Libsch, "Ni–NiO–Ni tunnel junctions for terahertz and infrared detection," Appl. Opt. 44, 6813-6822 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-32-6813


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Sanchez, C. F. Davis, K. C. Liu, A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270–5277 (1978). [CrossRef]
  2. B. Michael Kale, “Electron tunneling devices in optics,” Opt. Eng. 24, 267–274 (1985). [CrossRef]
  3. I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubuehl, “Nanometer thin-film Ni–NiO–Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994). [CrossRef]
  4. C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubuehl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996). [CrossRef]
  5. C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, G. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000). [CrossRef]
  6. C. Fumeaux, J. Alda, G. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett. 24, 1629–1631 (1999). [CrossRef]
  7. L. S. Dorneles, D. M. Schaefer, M. Carara, L. F. Schelp, “The use of Simmons’ equation to quantify the insulating barrier parameters in Al/AlOx/Al tunnel junctions,” Appl. Phys. Lett. 82, 2832–2834 (2003). [CrossRef]
  8. J. G. Simmons, “Generalized formula for the Electric Tunnel Effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963). [CrossRef]
  9. J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581–2590 (1963). [CrossRef]
  10. J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “ac electron tunneling at infrared frequencies: thin-film MOM diode structure with broadband characteristics,” Appl. Phys. Lett. 24, 275–279 (1974). [CrossRef]
  11. M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. QE-14, 159–169 (1978). [CrossRef]
  12. S. K. Masalmeh, H. K. E. Stadermann, J. Korving, “Mixing and rectification properties of MIM diodes,” Physica B 218, 56–59 (1996). [CrossRef]
  13. J. A. Nelder, R. Mead, “A simple method for function minimization,” Comput. J. 7, 308–313 (1965). [CrossRef]
  14. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge University, 1988), Section 10.4.
  15. G. A. Keefe, IBM T. J. Watson Research Center, Yorktown Heights, N.Y. 10598 (personal communication).
  16. L. D. Jackel, R. E. Howard, E. L. Hu, D. M. Tennant, P. Grabbe, “50-nm silicon structures fabricated with trilevel electron beam resist and reactive-ion etching,” Appl. Phys. Lett. 39, 268–270 (1981). [CrossRef]
  17. J. D. R. Buchanan, T. P. A. Hase, B. K. Tanner, N. D. Hughes, R. J. Hicken, “Determination of the thickness of Al203 barriers in magnetic tunnel junctions,” Appl. Phys. Lett. 81, 751 (2002). [CrossRef]
  18. D. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC Press, 2000), pp. 12–46.
  19. E. M. L. Chung, D. M. Paul, G. Balakrishnan, M. R. Lees, A. Ivanov, M. Yethiraj, “Role of electronic correlations on the phonon modes of MnO and NiO,” Phys. Rev. B 68, 140–146 (2003). [CrossRef]
  20. W. Olejniczak, M. Bieniecki, “Fine structure in differential conductance of oxidized nickel observed in a room temperature stm experiment,” Solid State Commun. 101, 877–882 (1997). [CrossRef]
  21. D. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC Press, 2000), pp. 12–200.
  22. E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, “Thermal boundary resistance of mechanical contacts between solids at subambient temperatures,” J. Phys. D 32, R19–R43 (1999). [CrossRef]
  23. E. T. Swartz, R. O. Pohl, “Thermal boundary resistance,” Rev. Mod. Phys. 61, 605–667 (1989). [CrossRef]
  24. Ref. 8, Eq. (1).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited