OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 32 — Nov. 10, 2005
  • pp: 6933–6939

Chromatic compensation in the near-field region: shape and size tunability

G. Mínguez-Vega, M. Fernández-Alonso, E. Tajahuerce, J. Lancis, Z. Jaroszewicz, and P. Andrés  »View Author Affiliations

Applied Optics, Vol. 44, Issue 32, pp. 6933-6939 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a diffractive-lens triplet with which to achieve wavelength compensation in the near field diffracted by any aperture. On the one hand, the all-diffractive triplet allows us to tune, in a sequential way, the Fresnel-irradiance shape to be achromatized by changing the focal length of one diffractive lens. On the other hand, we can adjust the scale of the chromatically compensated Fresnel diffraction field by shifting the aperture along the optical axis. Within this framework, we present an extremely flexible white-light Fresnel-plane array illuminator based on the kinoform sampling filter. A variable compression ratio and continuous selection of the output pitch are the most appealing features of this novel application.

© 2005 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects

ToC Category:
Fourier optics and signal processing

Original Manuscript: May 16, 2005
Revised Manuscript: July 6, 2005
Manuscript Accepted: July 15, 2005
Published: November 10, 2005

G. Mínguez-Vega, M. Fernández-Alonso, E. Tajahuerce, J. Lancis, Z. Jaroszewicz, and P. Andrés, "Chromatic compensation in the near-field region: shape and size tunability," Appl. Opt. 44, 6933-6939 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  2. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000). [CrossRef]
  3. G. M. Morris, D. A. Zweig, “White-light Fourier transformations,” in Optical Signal Processing, J. L. Horner, ed.(Academic, 1987), Chap. 1.2.
  4. E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, P. Andrés, “Achromatic Fourier transforming properties of a separated diffractive lens doublet: theory and experiment,” Appl. Opt. 37, 6164–6173 (1998). [CrossRef]
  5. J. Lancis, E. Tajahuerce, P. Andrés, G. Mínguez-Vega, M. Fernández-Alonso, V. Climent, “Quasi-wavelength-independent broadband optical Fourier transformer,” Opt. Commun. 172, 153–160 (1999). [CrossRef]
  6. D. Y. Wang, A. Pe’er, A. W. Lohmann, A. A. Friesem, “Wigner algebra as a tool for the design of achromatic optical processing systems,” Opt. Eng. 39, 3014–3024 (2000). [CrossRef]
  7. M. Domingo, I. Arias, A. García, “Achromatic Fourier processor with holographic optical lenses,” Appl. Opt. 40, 2267–2274 (2001). [CrossRef]
  8. J. Lancis, E. Tajahuerce, P. Andrés, V. Climent, E. Tepichin, “Single-zone-plate achromatic Fresnel-transform setup: pattern tunability,” Opt. Commun. 136, 297–305 (1997). [CrossRef]
  9. E. Tajahuerce, G. Saavedra, W. D. Furlan, E. E. Sicre, P. Andrés, “White-light optical implementation of the fractional Fourier transform with adjustable order control,” Appl. Opt. 39, 238–245 (2000). [CrossRef]
  10. J. Lancis, G. Mínguez-Vega, E. Tajahuerce, V. Climent, P. Andrés, J. Caraquitena, “Chromatic compensation of broadband light diffraction: ABCD-matrix approach,” J. Opt. Soc. Am. A 21, 1875–1885 (2004). [CrossRef]
  11. J. Lancis, G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, P. Andrés, “Wavelength-compensated Fourier and Fresnel transformers: a unified approach,” Opt. Lett. 27, 942–944 (2002). [CrossRef]
  12. G. M. Morris, K. J. McIntyre, “Optical system design with diffractive optics,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie Verlag, 1997), pp. 81–104.
  13. G. Mínguez-Vega, J. Lancis, E. Tajahuerce, V. Climent, J. Caraquitena, P. Andrés, “Broadband space-variant Fresnel processor,” Opt. Lett. 27, 1926–1928 (2002). [CrossRef]
  14. S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, 2003). [CrossRef]
  15. A. W. Lohmann, J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990). [CrossRef] [PubMed]
  16. J. R. Leger, G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes,” Opt. Lett. 15, 288–290 (1990). [CrossRef] [PubMed]
  17. V. Arrizon, J. Ojeda-Castañeda, “Talbot array illuminators with binary phase gratings,” Opt. Lett. 18, 1–3 (1993). [CrossRef] [PubMed]
  18. H. Hamam, “Talbot array illuminators: a general approach,” Appl. Opt. 36, 2319–2327 (1997). [CrossRef] [PubMed]
  19. A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200, 35–42 (2001). [CrossRef]
  20. A. Kolodziejczyk, Z. Jaroszewicz, R. Henao, O. Quintero, “The Talbot array illuminator: imaging properties and a new interpretation,” J. Opt. A Pure Appl. Opt. 6, 651–657 (2004). [CrossRef]
  21. E. Tajahuerce, E. Bonet, P. Andrés, C. J. Zapata-Rodríguez, V. Climent, “White-light-modified Talbot array illuminator with a variable density of light spots,” Appl. Opt. 37, 4366–4373 (1998). [CrossRef]
  22. E. Tajahuerce, E. Bonet, J. Lancis, M. T. Gale, P. Andrés, “Achromatic fan-out diffractive system for white-light free-space optical interconnects,” J. Mod. Opt. 48, 831–845 (2001). [CrossRef]
  23. N. Guérineau, B. Harchaoui, J. Primot, “Talbot experiment re-examined: demonstration of an achromatic and continuous self-imaging regime,” Opt. Commun. 180, 199–203 (2000). [CrossRef]
  24. N. Guérineau, B. Harchaoui, J. Primot, K. Heggarty, “Generation of achromatic and propagation-invariant spot arrays by use of continuously self-imaging gratings,” Opt. Lett. 26, 411–423 (2001). [CrossRef]
  25. A. E. Siegman, Lasers (University Science, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited