OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 32 — Nov. 10, 2005
  • pp: 6986–6994

Use of shadows to retrieve water vapor in hazy atmospheres

North F. Larsen and K. Stamnes  »View Author Affiliations


Applied Optics, Vol. 44, Issue 32, pp. 6986-6994 (2005)
http://dx.doi.org/10.1364/AO.44.006986


View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Techniques aimed at retrieving water vapor from satellite data of reflected near-infrared solar radiation have progressed significantly in recent years. These techniques rely on observation of water vapor attenuation of near-infrared solar radiation reflected by the Earth’s surface. Ratios of measured radiances at wavelengths inside and outside water vapor absorbing channels are used for retrieval purposes. These ratios partially remove the dependence of surface reflectance on wavelength and are used to retrieve the total column water vapor amount. Hazy atmospheric conditions, however, introduce errors into this widely used technique. A new method based on radiance differences between clear and nearby shadowed surfaces, combined with ratios between water vapor absorbing and window regions, is presented that improves water vapor retrievals under hazy atmospheric conditions. Radiative transfer simulations are used to demonstrate the advantage offered by this technique.

© 2005 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1120) Remote sensing and sensors : Air pollution monitoring
(290.1090) Scattering : Aerosol and cloud effects

ToC Category:
Remote Sensing

History
Original Manuscript: March 4, 2005
Revised Manuscript: May 6, 2005
Manuscript Accepted: May 9, 2005
Published: November 10, 2005

Citation
North F. Larsen and K. Stamnes, "Use of shadows to retrieve water vapor in hazy atmospheres," Appl. Opt. 44, 6986-6994 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-32-6986


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Peixoto, A. H. Oort, Physics of Climate (American Institute of Physics, 1992), pp. 278–285.
  2. D. C. Chesters, L. W. Uccellini, W. D. Robinson, “Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) split-window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983). [CrossRef]
  3. J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984). [CrossRef]
  4. C. Prabhakara, H. D. Chang, A. T. C. Chang, “Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements,” J. Appl. Meteorol. 21, 59–68 (1982). [CrossRef]
  5. R. R. Ferraro, F. Z. Weng, N. C. Grody, A. Basist, “An eight year(1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements,” Bull. Am. Meteorol. Soc. 77, 891–905 (1996). [CrossRef]
  6. J. E. Conel, R. O. Green, C. Carrere, J. S. Margolis, R. E. Alley, G. Vane, C. J. Bruegge, B. L. Gary, “Atmospheric water vapor mapping with the airborne visible/infrared imaging spectrometer (AVIRIS) Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, G. Vane, ed., Publ. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif, 1988), pp. 21–29.
  7. B.-C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990). [CrossRef]
  8. R. Frouin, P. Y. Deschamps, P. Lecomte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990). [CrossRef]
  9. Y. J. Kaufman, B.-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992). [CrossRef]
  10. C. C. Borel, W. B. Clodius, J. Johnson, “Water vapor retrieval over many surface types,” in Algorithms for Multi-spectral and Hyperspectral Imagery II, A. E. Iverson, ed., Proc. SPIE2758, 218–228 (1996). [CrossRef]
  11. S. Bouffies, F. M. Breon, D. Tanre, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the earth reflectances (POLDER) instrument,” J. Geophys. Res. 102, 3831–3841 (1997). [CrossRef]
  12. S. Thai, M. V. Schonermark, “Determination of the column water vapor of the atmosphere using backscattered solar radiation measured by the Modular Optoelectronic Scanner (MOS),” Int. J. Remote Sens. 19, 3223–3236 (1998). [CrossRef]
  13. M. Vesperini, F.-M. Breon, D. Tanre, “Atmospheric water vapor content from spaceborne POLDER measurements,” IEEE Trans. Geosci. Remote Sens. 37, 1613–1619 (1999). [CrossRef]
  14. B.-C. Gao, Y. Kaufman, “Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels,” J. Geophys. Res. 108, 4389, doi: (2003). [CrossRef]
  15. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989). [CrossRef]
  16. B.-C. Gao, Y. Kaufman, “MODIS near-IR water vapor algorithm: algorithm theoretical basis document (MOD05),” NASA Algorithm Tech. Background Doc. Publ. Product ID MOD05 (NASA Goddard Space Flight Center, 1998).
  17. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, K. Jayaweera, “A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  18. G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, L. S. Jeong, “MODT-RAN4 radiative transfer modeling for remote sensing,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descour, eds., Proc. SPIE4049, 76–183 (2000). [CrossRef]
  19. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (U. S. Air Force Geophysics Laboratory, 1989).
  20. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” (U.S. Air Force Cambridge Research Laboratory, 1972).
  21. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, 1986).
  22. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  23. G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, 1999). [CrossRef]
  24. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, 1988).
  25. S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: FASCODE2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meteorological Society, 1986), pp. 141–144.
  26. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Payret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCaan, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Work Station): 1996,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  27. E. P. Shettle, R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” in Optical Propagation in the Atmosphere, Agard Conference Proceedings 183, (National Technical Information Service ADA 028615, 1976).
  28. S.-C. Tsay, G. L. Stephens, “A physical/optical model for atmospheric aerosols with application to visibility problems,” Rep. (Cooperative Institute for Research in the Atmosphere, Boulder, Colo., 1990).
  29. B. Yan, K. Stamnes, W. Li, B. Chen, J. J. Stamnes, S. C. Tsay, “Pitfalls in atmospheric correction of ocean color imagery: How should aerosol optical properties be computed?” Appl. Opt. 41, 412–423 (2002). [CrossRef] [PubMed]
  30. C. G. Gelpi, “Removing path-scattered radiance from over-ocean spectrometer images for water vapor estimation,” Remote Sens. Environ. 74, 414–421 (2000). [CrossRef]
  31. R. S. Fraser, Y. J. Kaufman, “The relative importance of aerosol scattering and absorption in remote sensing,” IEEE J. Geosci. Remote Sens. 23, 525–633 (1985).
  32. S. Ackerman, K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, C. Schaaf, G. Riggs, “Discriminating clear-sky from clouds with MODIS: algorithm theoretical basis document (MOD35),” NASA Algorithm Tech. Background Doc. Publ. Prod. ID MOD35 (NASA Goddard Space Flight Center, 1997).
  33. M. King, S.-C. Tsay, S. Ackerman, N. Larsen, “Discriminating heavy aerosols, clouds, and fires during SCAR-B: application of airborne multispectral MAS data,” J. Geophysical Res. 103, 31989–31999 (1998). [CrossRef]
  34. Y. J. Kaufman, A. Wald, L. A. Remer, B. C. Gao, R. R. Li, L. Flynn, “The MODIS 2.1 µm channel—correlation with visible reflectance for use of remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited