OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7021–7031

Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles

Leonid Dombrovsky, Jaona Randrianalisoa, Dominique Baillis, and Laurent Pilon  »View Author Affiliations


Applied Optics, Vol. 44, Issue 33, pp. 7021-7031 (2005)
http://dx.doi.org/10.1364/AO.44.007021


View Full Text Article

Enhanced HTML    Acrobat PDF (198 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An improved method used to determine the absorption and scattering characteristics of a weakly absorbing substance containing bubbles is suggested. The identification procedure is based on a combination of directional-hemispherical measurements and predictions of Mie-scattering theory including approximate relations for a medium with polydisperse bubbles. A modified two-flux approximation is suggested for the calculation of directional-hemispherical transmittance and reflectance of a refracting and scattering medium. The complete identification procedure gives not only the spectral radiative properties but also the volume fraction of bubbles and the characteristics of possible impurity of the medium. This procedure is used to obtain new data on near-infrared properties of fused-quartz samples containing bubbles.

© 2005 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.5620) Coherence and statistical optics : Radiative transfer
(290.4020) Scattering : Mie theory

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: January 21, 2005
Revised Manuscript: June 20, 2005
Manuscript Accepted: June 22, 2005
Published: November 20, 2005

Citation
Leonid Dombrovsky, Jaona Randrianalisoa, Dominique Baillis, and Laurent Pilon, "Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles," Appl. Opt. 44, 7021-7031 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-33-7021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Zhang, M. Lewis, B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998). [CrossRef]
  2. L. A. Dombrovsky, “The propagation of infrared radiation in a semitransparent liquid containing gas bubbles,” High Temp. 42, 133–139 (2004).
  3. A. G. Fedorov, L. Pilon, “Glass foam: formation, transport properties, and heat, mass, and radiation transfer,” J. Non-Cryst. Solids 311, 154–173 (2002). [CrossRef]
  4. A. M. Papadopoulos, “State of the art in thermal insulation materials and aims for future developments,” Energy Build. 37, 77–86 (2005). [CrossRef]
  5. M. L. German, P. S. Grinchuk, “Mathematical model for calculating the heat-protection properties of the composite coating ceramic microspheres—binder,” J. Eng. Phys. Thermophys. 75, 1301–1313 (2002). [CrossRef]
  6. G. M. Campbell, E. Mougeot, “Creation and characterisation of aerated food products,” Trends Food Sci. Technol. 10, 283–296 (1999). [CrossRef]
  7. L. Pilon, R. Viskanta, “Radiation characteristics of glass containing bubbles,” J. Am. Ceram. Soc. 86, 1313–1320 (2003). [CrossRef]
  8. D. Baillis, L. Pilon, H. Randrianalisoa, R. Gomez, R. Viskanta, “Measurements of radiation characteristics of fused quartz containing bubbles,” J. Opt. Soc. Am. A 21, 149–159 (2004). [CrossRef]
  9. D. Baillis, J.-F. Sacadura, “Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,” J. Quant. Spectrosc. Radiat. Transfer 67, 327–363 (2000). [CrossRef]
  10. M. F. Modest, Radiative Heat Transfer, 2nd ed.(Academic, 2003).
  11. L. A. Dombrovsky, Radiation Heat Transfer in Disperse Systems (Begell, 1996).
  12. V. A. Petrov, “Solution of inverse problems of radiation transfer in semitransparent scattering materials based on the radiation diffusion approximation,” High Temp.—High Pressures 26, 339–351 (1994).
  13. S. S. Moiseev, V. A. Petrov, S. V. Stepanov, “The optical properties of heat-insulating ceramics made of microballoons of aluminum oxide,” High Temp. 42, 127–132 (2004). [CrossRef]
  14. M. M. Gurevich, E. F. Itsko, M. M. Seredenko, Optical Properties of Paint Coatings (Chemistry, 1984) (in Russian).
  15. Z. C. Orel, M. K. Gunde, B. Orel, “Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints,” Prog. Org. Coat. 30, 59–66 (1997). [CrossRef]
  16. W. E. Vargas, P. Greenwood, J. E. Otterstedt, G. A. Niklasson, “Light scattering in pigmented coatings: experiments and theory,” Sol. Energy 68, 553–561 (2000). [CrossRef]
  17. C. Rosé, T. Girasole, G. Gréhan, G. Gouesbet, B. Maheu, “Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media,” Opt. Commun. 194, 251–263 (2001). [CrossRef]
  18. J.-F. Sacadura, D. Baillis, “Experimental characterization of thermal radiation properties of disperse media,” Int. J. Thermal Sci. 41, 699–707 (2002). [CrossRef]
  19. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  20. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  21. L. A. Dombrovsky, “Approximate methods for calculating radiation heat transfer in dispersed systems,” Thermal Eng. 43, 235–243 (1996).
  22. W. C. Mundy, J. A. Roux, A. M. Smith, “Mie scattering in an absorbing medium,” J. Opt. Soc. Am. 64, 1593–1597 (1974). [CrossRef]
  23. P. Chylek, “Light scattering by small particles in an absorbing medium,” J. Opt. Soc. Am. 67, 561–563 (1977). [CrossRef]
  24. I. W. Sudiarta, P. Chylek, “Mie scattering efficiency of a large spherical particle embedded in an absorbing medium,” J. Quant. Spectrosc. Radiat. Transfer 70, 709–714 (2001). [CrossRef]
  25. Q. Fu, W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354–1361 (2001). [CrossRef]
  26. P. Yang, B.-C. Gao, W. J. Wiscombe, M. I. Mishchenko, S. E. Platnick, H.-L. Huang, B. A. Baum, Y. X. Hu, D. M. Winker, S.-C. Tsay, S. K. Park, “Inherent and apparent scattering properties of coated or uncoated spheres embedded in an absorbing host medium,” Appl. Opt. 41, 2740–2759 (2002). [CrossRef] [PubMed]
  27. W. Sun, N. S. Loeb, Q. Fu, “Light scattering by coated sphere immersed in absorbing medium: a comparison between the FDTD and analytic solutions,” J. Quant. Spectrosc. Radiat. Transfer 83, 483–492 (2004). [CrossRef]
  28. L. A. Dombrovsky, “Modeling of thermal radiation of a polymer coating containing hollow microspheres,” High Temp. 43, 247–258 (2005). [CrossRef]
  29. A. G. Fedorov, R. Viskanta, “Radiative characteristics of glass foams,” J. Am. Ceram. Soc. 83, 2769–2776 (2000). [CrossRef]
  30. L. A. Dombrovsky, S. S. Sazhin, S. V. Mikhalovsky, R. Wood, M. R. Heikal, “Spectral properties of diesel fuel droplets,” Fuel 82, 15–22 (2003). [CrossRef]
  31. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  32. C. Z. Tan, “Determination of refractive index of silica glass for infrared wavelength by IR spectroscopy,” J. Non-Cryst. Solids 223, 158–163 (1998). [CrossRef]
  33. C. Z. Tan, J. Arndt, “Refractive index, optical dispersion, and group velocity of infrared waves in silica glass,” J. Phys. Chem. Solids 62, 1087–1092 (2001). [CrossRef]
  34. E. C. Beder, C. D. Bass, W. L. Shackleford, “Transmissivity and absorption of fused quartz between 0.2 µm and 3.5 µm from room temperature to 1500 degree C,” Appl. Opt. 10, 2263–2268 (1971). [CrossRef] [PubMed]
  35. Y. S. Touloukian, D. P. DeWitt, eds, Thermal Radiative Properties: Nonmetallic Solids, Vol. 8 of Thermophysical Properties of Matter (Plenum, 1972).
  36. M. A. Khashan, A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3 µm,” Opt. Commun. 188, 129–139 (2001). [CrossRef]
  37. M. Born, E. Wolf, Principles of Optics (Pergamon, 1968).
  38. M. Caldas, V. Semião, “A new approximate phase function for isolated particles and polydispersions,” J. Quant. Spectrosc. Radiat. Transfer 68, 521–542 (2001). [CrossRef]
  39. L. Hespel, S. Mainguy, J.-J. Greffet, “Radiative properties of scattering and absorbing dense media: theory and experimental study,” J. Quant. Spectrosc. Radiat. Transfer 77, 193–210 (2003). [CrossRef]
  40. L. A. Dombrovsky, “Thermal radiation from nonisothermal spherical particle,” Int. J. Heat Mass Transfer 43, 1661–1672 (2000). [CrossRef]
  41. L. A. Dombrovsky, “A modified differential approximation for thermal radiation of semitransparent nonisothermal particles: application to optical diagnostics of plasma spraying,” J. Quant. Spectrosc. Radiat. Transfer 73, 433–441 (2002). [CrossRef]
  42. P. J. Coelho, “Bounded skew high order resolution schemes for the discrete ordinates method,” J. Comput. Phys. 175, 412–437 (2002). [CrossRef]
  43. B.-T. Liou, C.-Y. Wu, “Radiative transfer in a multi-layer medium with Fresnel interfaces,” Heat Mass Transfer 32, 103–107 (1996). [CrossRef]
  44. V. G. Plotnichenko, V. O. Sokolov, E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261, 186–194 (2000). [CrossRef]
  45. M. Tomozawa, D.-L. Kim, V. Lou, “Preparation of high purity, low water content fused silica glass,” J. Non-Cryst. Solids 296, 102–106 (2001). [CrossRef]
  46. T. Kournyts’kyi, R. V. N. Melnik, A. Gachkevich, “Thermal behavior of absorbing and scattering glass media containing molecular water impurity,” Int. J. Thermal Sci. 44, 107–114 (2005). [CrossRef]
  47. G. M. Hale, M. P. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited