OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7039–7042

Optically reconfigurable azobenzene polymer-based fiber Bragg filter

Rune Lausten, Paul Rochon, Mario Ivanov, Pavel Cheben, Siegfried Janz, Pierre Desjardins, John Ripmeester, Torsten Siebert, and Albert Stolow  »View Author Affiliations


Applied Optics, Vol. 44, Issue 33, pp. 7039-7042 (2005)
http://dx.doi.org/10.1364/AO.44.007039


View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optically writable, thermally erasable surface relief gratings in thin Disperse Red 1 polymethyl methacrylate azopolymer films were used to demonstrate an arbitrarily reconfigurable fiber Bragg filter. Gratings were optically written on azopolymer-coated side-polished fiber blocks, and a write–erase–write cycle was demonstrated. Finite difference time domain simulations reveal that this optically reconfigurable device concept can be optimized in a silicon-on-insulator waveguide platform.

© 2005 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 9, 2005
Revised Manuscript: May 5, 2005
Manuscript Accepted: May 9, 2005
Published: November 20, 2005

Citation
Rune Lausten, Paul Rochon, Mario Ivanov, Pavel Cheben, Siegfried Janz, Pierre Desjardins, John Ripmeester, Torsten Siebert, and Albert Stolow, "Optically reconfigurable azobenzene polymer-based fiber Bragg filter," Appl. Opt. 44, 7039-7042 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-33-7039


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lörincz, G. Erdei, G. Szarvas, “Physics and technology of optical storage in polymer thin film,” Synth. Met. 124, 145–150 (2001). [CrossRef]
  2. A. Natansohn, P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002). [CrossRef] [PubMed]
  3. P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995). [CrossRef]
  4. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999). [CrossRef]
  5. N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996). [CrossRef] [PubMed]
  6. V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef] [PubMed]
  7. H. G. Limberger, N. Hong Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998). [CrossRef]
  8. S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, J. Jeong, “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34, 104–105 (1998). [CrossRef]
  9. J. L. Cruz, A. Diez, M. V. Andrés, A. Segura, B. Ortega, L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997). [CrossRef]
  10. M. Le Blanc, S. Y. Huang, M. M. Ohn, R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever beam,” Electron. Lett. 30, 2163–2165 (1994). [CrossRef]
  11. S. Jin, H. Mavoori, R. P. Espindola, T. A. Strasser, “Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings,” Appl. Phys. Lett. 74, 2259–2261 (1999). [CrossRef]
  12. S. Xie, A. Natansohn, P. Rochon, “Microstructure of copolymers containing Disperse Red 1 and methyl methacrylate,” Macromolecules 27, 1885–1890 (1994). [CrossRef]
  13. Side-polished fiber blocks were made by Javier Pelayo, Departamento de Física Aplicada, Universidad de Zaragoza, Zaragoza 50009, Spain.
  14. Mode solver developed by André Delâge, Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.
  15. K. McCallion, S. Creaney, I. Madden, W. Johnstone, “A tunable fiber-optic bandpass filter based on polished fiber to planar waveguide coupling techniques,” Opt. Fiber Technol. 1, 271–277 (1995). [CrossRef]
  16. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, H. Sasabe, “Polymer waveguide overlays for side-polished fiber devices,” Appl. Opt. 37, 453–462 (1998). [CrossRef]
  17. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  18. T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  19. W. V. Sorin, H. J. Shaw, “A single-mode fiber evanescent grating reflector,” IEEE J. Lightwave Technol. 5, 1041–1043 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited