OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7074–7082

Exploration of the retinal nerve fiber layer thickness by measurement of the linear dichroism

Olivier Karim Naoun, Valérie Louis Dorr, Paul Allé, Jean-Christophe Sablon, and Anne-Marie Benoit  »View Author Affiliations


Applied Optics, Vol. 44, Issue 33, pp. 7074-7082 (2005)
http://dx.doi.org/10.1364/AO.44.007074


View Full Text Article

Enhanced HTML    Acrobat PDF (673 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An electro-optic device mounted on a slit lamp to assess the degree of polarization of a light beam that has double passed through the retina about the optic-nerve head in the living human eye is described. The asymmetric structure of the retinal nerve’s fiber layer possesses a linear-form dichroism and will partially polarize an unpolarized light beam that is scattered at the fundus of the eye and has double passed the ocular media (cornea, lens, retina). This partial polarization is a function of the retinal nerve’s fiber layer thickness, and its measurement may be used for exploring glaucoma and other retinal neuropathies. Experimental conditions allow us to neglect corneal dichroism. The first clinical measurements show a different degree of polarization between normal and glaucomatous eyes and a good correlation with the results obtained by optical coherence tomography.

© 2005 Optical Society of America

OCIS Codes
(100.1930) Image processing : Dichroism
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4470) Medical optics and biotechnology : Ophthalmology
(260.5430) Physical optics : Polarization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 25, 2004
Revised Manuscript: June 8, 2005
Manuscript Accepted: June 17, 2005
Published: November 20, 2005

Citation
Olivier Karim Naoun, Valérie Louis Dorr, Paul Allé, Jean-Christophe Sablon, and Anne-Marie Benoit, "Exploration of the retinal nerve fiber layer thickness by measurement of the linear dichroism," Appl. Opt. 44, 7074-7082 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-33-7074


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Hee, J. A. Izatt, E. A. Swanson, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995). [CrossRef] [PubMed]
  2. C. A. Puliafito, M. R. Hee, C. P. Lin, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: pilot study,” Arch. Ophthalmol. 113, 586–596 (1995). [CrossRef]
  3. T. A. El Beltagi, C. Bowd, C. Boden, P. Amini, P. A. Sample, L. M. Zangwill, R. N. Weinreb, “Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes,” Ophthalmology 110, 2185–2191 (2003). [CrossRef] [PubMed]
  4. H. Bagga, D. S. Greenfield, W. Feuer, R. W. Knighton, “Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes,” Am. J. Ophthalmol. 135, 521–529 (2003). [CrossRef] [PubMed]
  5. H. M. Kwok, V. W. Lee, F. S. Kwok, “Retinal nerve fiber loss in high- and normal-tension glaucoma by optical coherence tomography,” Optom. Vis. Sci. 81, 369–372 (2004). [CrossRef]
  6. S. Miglior, L. Rosetti, L. Brigatti, “Reproductibility of the retinal nerve fiber layer evaluation by dynamic scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 118, 16–23 (1994). [PubMed]
  7. L. M. Zangwill, F. C. Ching, J. M. Williams, R. N. Weinreb, “New technologies for diagnosing and monitoring glaucomatous optic neuropathy,” Optom. Vis. Sci. 76, 526–536 (1999). [CrossRef] [PubMed]
  8. L. M. Zangwill, K. Chan, C. Bowd, H. Jicuang, T. W. Lee, R. N. Weinreb, T. J. Sejnowski, M. H. Goldbaum, “Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers,” Invest. Ophthalmol. Visual. Sci. 45, 3144–3151 (2004). [CrossRef]
  9. C. Bowd, L. M. Zangwill, F. A. Medeiros, H. Jicuang, K. Chan, T. W. Lee, T. J. Sejnowski, M. H. Goldbaum, P. A. Sample, J. Crowston, R. N. Weinreb, “Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes,” Invest. Ophthalmol. Visual Sci. 45, 2255–2262 (2004). [CrossRef]
  10. A. Summer, H. A. D. Kues, S. A. D’Anna, S. A. Arkell, S. Robin, H. A. Quigley, “Cross-polarization photography of the nerve fiber layer,” Arch. Ophthalmol. 102, 864–869 (1984). [CrossRef]
  11. A. W. Dreher, K. Reiter, “Retinal laser ellipsometry: a new method for measuring the retinal nerve fiber layer thickness distribution,” Clin. Vision Sci. 7, 481–488 (1992).
  12. N. J. Reus, T. P. Colen, H. G. Lemij, “Visualization of localized retinal nerve fiber layer defects with the GDx with individualized and with fixed compensation of anterior segment birefringence,” Ophthalmology 110, 1512–1516 (2003). [CrossRef] [PubMed]
  13. K. Mohammadi, C. Bowd, R. N. Weinreb, F. A. Meideros, P. A. Sample, L. M. Zangwill, “Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss,” Am. J. Ophthalmol. 138, 592–601 (2004). [CrossRef] [PubMed]
  14. F. A. Meideros, L. M. Zangwill, C. Bowd, R. N. Weinreb, “Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and Stratus OCT optical coherence tomograph for the detection of glaucoma,” Arch. Ophthalmol. 122, 827–837 (2004). [CrossRef]
  15. A. M. Benoit, K. Naoun, V. Louis-Dorr, L. Mala, A. Raspiller, “Linear dichroism of the retinal nerve fiber layer expressed with Mueller matrices,” Appl. Opt. 40, 565–569 (2001). [CrossRef]
  16. V. Louis-Dorr, K. Naoun, P. Allé, A.-M. Benoit, A. Raspiller, “Linear dichroism of the cornea,” Appl. Opt. 43, 1515–1521 (2004). [CrossRef] [PubMed]
  17. H. B. Klein Brink, G. J. Van Blockland, “Birefringence of the human foveal area assessed in vivo with Mueller matrix ellipsometry,” J. Opt. Soc. Am. A 5, 49–57 (1988). [CrossRef]
  18. A. W. Dreher, K. Reiter, J. Bill, “Assessment of the nerve fiber layer thickness with the LTS laser tomographic scanner,” Invest. Ophthalmol. Visual Sci. 29, 355 (1988).
  19. R. P. Hemenger, “Dichroism of the macula pigment and Haidinger’s brushes,” J. Opt. Soc. Am. 72, 734–737 (1982). [CrossRef] [PubMed]
  20. A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992). [CrossRef] [PubMed]
  21. B. F. Hochheimer, H. A. Kues, “Retinal polarization effects,” Appl. Opt. 21, 3811–3818 (1982). [CrossRef] [PubMed]
  22. F. A. Bettelheim, “On the optical anisotropy of the lens fiber cells,” Exp. Eye Res. 21, 231–234 (1975). [CrossRef] [PubMed]
  23. R. A. Weale, “Sex, age, and birefringence of the human crystalline lens,” Exp. Eye Res. 29, 449–461 (1975). [CrossRef]
  24. L. J. Bour, Polarized Light and the Eye, Vol. 1 of Visual Optics and Instrumentation (CRC, 1991).
  25. A. Stanworth, E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–169 (1953).
  26. G. J. Van Blockland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987). [CrossRef]
  27. J. M. Bueno, J. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthal. Physiol. Opt. 21, 384–392 (2001). [CrossRef]
  28. M. Born, E. Wolf, Principles of Optics (Pergamon, 1965).
  29. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).
  30. W. A. Shurcliff, Polarized Light (Harvard U. Press, 1962).
  31. R. A. Chipman, Handbook of Optics (McGraw-Hill, 1995).
  32. H. Mueller, “The foundations of optics,” J. Opt. Soc. Am. 38, 661(A)(1948).
  33. T. J. M. Berendschot, P. J. D. Delint, D. Van Norren, “Fundus reflectance—historical and present ideas,” Prog. Retinal Eye Res. 21, 171–200 (2003). [CrossRef]
  34. G. J. Van Blockland, D. Van Norren, “Intensity and polarization of light scattered at the small angles from the human fovea,” Vision Res. 26, 485–494 (1986). [CrossRef]
  35. G. J. Van Blockland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986). [CrossRef]
  36. R. A. Bone, J. T. Landrum, “Macular pigment in Henle fiber membranes: a model for Haindinger’s brushes,” Vision Res. 24, 103–108 (1984). [CrossRef]
  37. J. M. Bueno, E. Berrio, M. Ozolinsh, P. Artal, “Degree of polarization as an objective method of estimating scattering,” J. Opt. Soc. Am 21, 1316–1327 (2004). [CrossRef]
  38. American National Standards Institute, Safe Use of Lasers, ANSI Standard Z136.1-2000 (American National Standards Institute, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited