OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7112–7124

Power-efficient dual-rate optical transceiver

Yongrong Zuo, Fouad E. Kiamiley, Xiaoqing Wang, Ping Gui, Jeremy Ekman, Xingle Wang, Michael J. McFadden, and Michael W. Haney  »View Author Affiliations

Applied Optics, Vol. 44, Issue 33, pp. 7112-7124 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (2585 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dual-rate (2 Gbit/s and 100 Mbit/s) optical transceiver designed for power-efficient connections within and between modern high-speed digital systems is described. The transceiver can dynamically adjust its data rate according to performance requirements, allowing for power-on-demand operation. Dynamic power management permits energy saving and lowers device operating temperatures, improving the reliability and lifetime of optoelectronic-devices such as vertical-cavity surface-emitting lasers (VCSELs). To implement dual-rate functionality, we include in the transmitter and receiver circuits separate high-speed and low-power data path modules. The high-speed module is designed for gigabit operation to achieve high bandwidth. A simpler low-power module is designed for megabit data transmission with low power consumption. The transceiver is fabricated in a 0.5 µm silicon-on-sapphire complementary metal-oxide semiconductor. The VCSEL and photodetector devices are attached to the transceiver’s integrated circuit by flip-chip bonding. A free-space optical link system is constructed to demonstrate correct dual-rate functionality. Experimental results show reliable link operation at 2 Gbit/s and 100 Mbit/s data transfer rates with ∼104 and ∼9 mW power consumption, respectively. The transceiver’s switching time between these two data rates is demonstrated as 10 µs, which is limited by on-chip register reconfiguration time. Improvement of this switching time can be obtained by use of dedicated input–output pads for dual-rate control signals.

© 2005 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.4650) Optics in computing : Optical interconnects
(250.0250) Optoelectronics : Optoelectronics
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Optical Computing

Original Manuscript: April 14, 2005
Manuscript Accepted: July 18, 2005
Published: November 20, 2005

Yongrong Zuo, Fouad E. Kiamiley, Xiaoqing Wang, Ping Gui, Jeremy Ekman, Xingle Wang, Michael J. McFadden, and Michael W. Haney, "Power-efficient dual-rate optical transceiver," Appl. Opt. 44, 7112-7124 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000). [CrossRef]
  2. A. Z. Shang, F. A. P. Tooley, “Digital optical interconnects for networks and computing systems,” J. Lightwave Technol. 18, 2086–2094 (2000). [CrossRef]
  3. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. E. Kiamilev, Y. Liu, M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999). [CrossRef]
  4. B. Hawkins, B. Hawthorne, “2.5 Gpbs oxide isolated VCSEL reliability report” (Honeywell International, 2003).
  5. L. Chen, M. Li, C. Chang-Hasnain, K. Lau, “A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photon. Technol. Lett. 9, 997–999 (1997). [CrossRef]
  6. R. Tao, M. Berroth, Z. Wang, “Low power 10 Gbit/s VCSEL driver for optical interconnect,” Electron. Lett. 39, 1743–1744 (2003). [CrossRef]
  7. A. Emami-Neyestanak, D. Liu, G. Keeler, N. Helman, M. Horowitz, “A 1.6 Gbps, 3mW CMOS receiver for optical communication,” in IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, 2002), pp. 84–87.
  8. M. Ingels, M. S. J. Steyaert, “A 1-Gb/s, 0.7-m CMOS optical receiver with full rail-to-rail output swing,” IEEE J. Solid-State Circuits 34, 971–977 (1999). [CrossRef]
  9. D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001). [CrossRef]
  10. T. Nagahori, N. Suzuki, “An analog front-end chip set employing an electro-optical mixed design on SPICE for 5-Gb/s/ch parallel optical interconnection,” IEEE J. Solid-State Circuits 36, 1984–1991 (2001). [CrossRef]
  11. O. Qasaimeh, W. Zhou, P. Bhattacharya, D. Huffaker, D. G. Deppe, “Monolithically integrated low-power phototransceivers for optoelectronic parallel sensing and processing applications,” J. Lightwave Technol. 19, 546–552 (2001). [CrossRef]
  12. A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995). [CrossRef]
  13. O. Kibar, D. A. Van Blerkom, C. Fan, S. C. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections,” J. Lightwave Technol. 17, 546–555 (1999). [CrossRef]
  14. P. Gui, F. E. Kiamilev, X. Q. Wang, X. L. Wang, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s 0.5µm CMOS parallel optical transceiver with fast power-on capability,” J. Lightwave Technol. 9, 2135–2148 (2004). [CrossRef]
  15. X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004). [CrossRef]
  16. N. Gata, S. Subramaniana, S. Rossa, C. LaBawb, J. Bond, “Thermal infrared imaging spectrometer (TIRIS) status report,” in Infrared Technology & Applications XXIII, B. F. Andresen, M. Strojnik, eds., Proc. SPIE3061, 284–291 (1997). [CrossRef]
  17. Canadian Center For Remote Sensing online tutorial: http://www.ccrs.nrcan.gc.ca/ccrs/learn/tutorials/fundam/chapter2/chapter2_2_e.html .
  18. P. Fricker, “Airborne imaging technology: today’s reality,” Directions Mag. (19April2004).
  19. J. W. Roberts, “Traffic theory and the Internet,” IEEE Commun. Mag. 39, 94–99 (2001). [CrossRef]
  20. M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y. Zhang, “Experience in measuring Internet backbone traffic variability models, metrics, measurements and meaning,” presented at the 18th International Teletraffic Congress, Berlin, Germany, 2003.
  21. M. Roughan, C. Kalmanek, “Pragmatic modeling of broadband access traffic,” Computer Commun. 26, 804–816 (2003). [CrossRef]
  22. M. Anis, M. Allam, M. Elmasry, “Impact of technology scaling on CMOS logic styles,” IEEE Trans. Circuits Syst. II 49, 577–588 (2002). [CrossRef]
  23. J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003). [CrossRef]
  24. J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits, 2nd ed. (Pearson Education, 2003), p. 168.
  25. J. Tatum, J. Guenter, “Modulating VCSELs” (Honeywell International, 1998).
  26. L. Zei, K. Petermann, R. Jäger, K. J. Ebeling, “Operation range of VCSEL-interconnect links with ‘below-threshold’ biasing,” J. Lightwave Technol. 18, 477–481 (2000). [CrossRef]
  27. L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996). [CrossRef]
  28. A. Hastings, The Art of Analog Layout (Prentice-Hall, 2001).
  29. P. McAdam, B. Goldberg, “UTSi CMOS SOS for mixed signal ICs” (Peregrine Semiconductor Corporation, 2001).
  30. Emcore Corporation, “Spec, Oxide Array Die, 1 × 4 3.125 Gb (U-lot), 8685-1402,” data sheet (Emcore Corporation, 2001).
  31. Emcore Corporation, “Spec, PIN Array Die 1 × 4 3.125 Gb, S8485-1405,” data sheet (Emcore Corporation, Albuquerque, 2001).
  32. M Pedram, J. Rabaey, Power Aware Design Methodologies (Kluwer Academic, 2002), Chap. 8. [CrossRef]
  33. H. Iwai, “CMOS technology-year 2010 and beyond,” IEEE J. Solid-State Circuits 34, 357–366 (1999). [CrossRef]
  34. J. P. UyeMuru, CMOS Logic Circuit Design (Kluwer Academic, 1999), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited