OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7125–7129

Temporal fringe pattern analysis with parallel computing

Tuck Wah Ng, Kar Tien Ang, and Gianluca Argentini  »View Author Affiliations

Applied Optics, Vol. 44, Issue 33, pp. 7125-7129 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (481 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temporal fringe pattern analysis is invaluable in transient phenomena studies but necessitates long processing times. Here we describe a parallel computing strategy based on the single-program multiple-data model and hyperthreading processor technology to reduce the execution time. In a two-node cluster workstation configuration we found that execution periods were reduced by 1.6 times when four virtual processors were used. To allow even lower execution times with an increasing number of processors, the time allocated for data transfer, data read, and waiting should be minimized. Parallel computing is found here to present a feasible approach to reduce execution times in temporal fringe pattern analysis.

© 2005 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.3010) Image processing : Image reconstruction techniques
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:
Image Processing

Original Manuscript: March 28, 2005
Manuscript Accepted: July 12, 2005
Published: November 20, 2005

Tuck Wah Ng, Kar Tien Ang, and Gianluca Argentini, "Temporal fringe pattern analysis with parallel computing," Appl. Opt. 44, 7125-7129 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Robinson, “Automatic fringe analysis with a computer image processing system,” Appl. Opt. 22, 2169–2176 (1983). [CrossRef]
  2. K. Creath, “Phase shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985). [CrossRef]
  3. M. Takeda, H. Ina, S. Kobayashi, “Fourier transform method of fringe pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  4. G. A. Slettemoen, J. C. Wyant, “Maximal fraction of acceptable measurements in phase shifting speckle interferometry,” J. Opt. Soc. Am. A 3, 210–214 (1986). [CrossRef]
  5. D. C. Ghiglia, G. A. Mastin, L. A. Romero, “Cellular automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267–280 (1987). [CrossRef]
  6. K. M. Hung, T. Yamada, “Phase unwrapping by regions using the least-squares approach,” Opt. Eng. 37, 2965–2970 (1998). [CrossRef]
  7. J. L. Marroquin, M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995). [CrossRef]
  8. D. Kerr, G. H. Kaufmann, G. E. Galizzi, “Unwrapping of interferometric phase fringe maps by the discrete cosine transform,” Appl. Opt. 35, 810–816 (1996). [CrossRef] [PubMed]
  9. J. M. Huntley, H. Saldner, “Temporal phase unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993). [CrossRef] [PubMed]
  10. J. M. Kilpatrick, A. J. Moore, J. S. Barton, J. D. C. Jones, M. Reeves, C. Buckberry, “Measurement of complex surface deformation by high-speed dynamic phase-stepped digital speckle pattern interferometry,” Opt. Lett. 25, 1068–1070 (2000). [CrossRef]
  11. T. E. Carlsson, A. Wei, “Phase evaluation of speckle patterns during continuous deformation by use of phase-shifting speckle interferometry,” Appl. Opt. 39, 2628–2637 (2000). [CrossRef]
  12. T. W. Ng, F. S. Chau, “Automated analysis in digital speckle shearing interferometry using an objet step-loading method,” Opt. Commun. 108, 214–218 (1994). [CrossRef]
  13. T. W. Ng, “Carrier-modulated object step-loading method of automated analysis in digital speckle shearing interferometry,” J. Mod. Opt. 42, 2109–2118 (1995). [CrossRef]
  14. J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Sinusoidal least-squares fitting for temporal fringe pattern analysis,” J. Mod. Opt. 49, 2257–2266 (2002). [CrossRef]
  15. J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Synchronous detection techniques for temporal fringe pattern analysis,” Opt. Commun. 204, 75–81 (2002). [CrossRef]
  16. V. D. Madjarova, H. Kadono, S. Toyooka, “Dynamic electronic speckle pattern interferometry (DESPI) phase analysis with temporal Hilbert transform,” Opt. Express 11, 617–623 (2003). [CrossRef] [PubMed]
  17. E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002). [CrossRef]
  18. D. Ambrosi, D. Paoletti, G. Schirripa Spagnalo, “Study of free-convective onset on a horizontal wire using speckle pattern interferometry,” Int. J. Heat Mass Transfer 46, 4145–4155 (2003). [CrossRef]
  19. T. W. Ng, K. T. Ang, “Data compression for speckle correlation interferometry temporal fringe pattern analysis,” Appl. Opt. 44, 2799–2804 (2005). [CrossRef] [PubMed]
  20. T. W. Ng, K. T. Ang, “Fourier transform method of data compression and temporal fringe pattern analysis,” Appl. Opt. (to be published).
  21. A. Grama, G. Karypis, V. Kumar, A. Gupta, An Introduction to Parallel Computing: Design and Analysis of Algorithms, 2nd ed. (Addison Wesley, 2003).
  22. W. Magro, P. Petersen, S. Shah, “Hyper-threading technology: impact on computer-intensive workloads,” Intel Technol. J. 6, 58–66 (2002).
  23. G. Argentini, “Using virtual processors for SPMD programs,” Comput. Res. Reposit, cs.DC/0312049 (2003).
  24. G. Argentini, “Cluster computing performances using virtual processors and MATLAB 6.5,” Comput. Res. Reposit. cs.DC/0401006 (2004).
  25. www.mathworks.com .
  26. www.scilab.org .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited