OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7130–7135

Underwater three-dimensional imaging with an amplitude-modulated laser radar at a 405 nm wavelength

Luciano Bartolini, Luigi De Dominicis, Mario Ferri de Collibus, Giorgio Fornetti, Massimiliano Guarneri, Emiliano Paglia, Claudio Poggi, and Roberto Ricci  »View Author Affiliations


Applied Optics, Vol. 44, Issue 33, pp. 7130-7135 (2005)
http://dx.doi.org/10.1364/AO.44.007130


View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the results of underwater imaging with an amplitude-modulated single-mode laser beam and miniaturized piezoactuator-based scanning system. The basic elements of the device are a diode laser source at 405 nm with digital amplitude modulation and a microscanning system realized with a small-aperture aspheric lens mounted on a pair of piezoelectric translators driven by sawtooth waveforms. The system has been designed to be a low-weight and rugged imaging device suitable to operate at medium range (∼10 m) in clear seawater as also demonstrated by computer simulation of layout performance. In the controlled laboratory conditions a submillimeter range accuracy has been obtained at a laser amplitude modulation frequency of 36.7 MHz.

© 2005 Optical Society of America

OCIS Codes
(010.3920) Atmospheric and oceanic optics : Meteorology
(110.0110) Imaging systems : Imaging systems

ToC Category:
Imaging Systems

History
Original Manuscript: June 15, 2005
Revised Manuscript: July 25, 2005
Manuscript Accepted: July 26, 2005
Published: November 20, 2005

Citation
Luciano Bartolini, Luigi De Dominicis, Mario Ferri de Collibus, Giorgio Fornetti, Massimiliano Guarneri, Emiliano Paglia, Claudio Poggi, and Roberto Ricci, "Underwater three-dimensional imaging with an amplitude-modulated laser radar at a 405 nm wavelength," Appl. Opt. 44, 7130-7135 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-33-7130


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. R. Fournier, D. Bonnier, J. L. Forand, P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993). [CrossRef]
  2. J. W. McLean, “High-resolution 3D underwater imaging,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 10–19 (1999). [CrossRef]
  3. P. Strand, “Underwater electro-optical system for mine identification,” in Detection Technologies for Mines and Mine-like Targets, A. C. Dubey, I. Cindrich, J. M. Ralston, K. A. Rigano, eds., Proc. SPIE2496, 487–497 (1995). [CrossRef]
  4. L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katzev, A. S. Prikhach, “Amplitude-modulated laser imager,” Appl. Opt. 43, 3874–3892 (2004). [CrossRef] [PubMed]
  5. D. Spitzer, M. R. Wernand, “In situ measurements of absorption spectra in the sea,” in Selected Papers on Underwater Optics, F. M. Caini, ed., vol. MS118 of the SPIE Milestone Series (SPIE, 1996), pp. 138–142.
  6. D. Nitzan, A. E. Brain, R. O. Duda, “The measurements and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65, 206–220 (1977). [CrossRef]
  7. L. Henyey, J. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  8. R. M. Pope, E. S. Fry, “Absorption spectrum(380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  9. T. E. Jordan, D. L. Cornel, J. Miklas, E. D. Weller, “Nutrients and clorophyll at the interface of a watershed and an estuary,” Limnol. Oceanogr. 36, 251–267 (1991). [CrossRef]
  10. R. E. Walker, J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt. 38, 2384–2397 (1999). [CrossRef]
  11. R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988). [CrossRef] [PubMed]
  12. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  13. I. L. Katsev, E. P. Zege, A. S. Prikhach, I. N. Polonski, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. A 14, 1338–1346 (1997). [CrossRef]
  14. P. Werle, R. Mücke, F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  15. R. Ricci, R. Fantoni, M. Ferri de Collibus, G. G. Fornetti, M. Guarneri, C. Poggi, “High resolution radar for 3D imaging in artwork cataloguing, reproduction and restoration,” in Optical Metrology for Arts and Multimedia, R. Salimbeni, ed., Proc. SPIE5146, 62–73 (2003). [CrossRef]
  16. P. D. T. Huibers, “Models for the wavelength dependence of the index of refraction of water,” Appl. Opt. 36, 3785–3787 (1997). [CrossRef] [PubMed]
  17. X. Quan, E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited