OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7161–7169

Thickness optimization of the composite gain medium for the oscillator and amplifier of the Lucia laser

Haiwu Yu and Gilbert Bourdet  »View Author Affiliations


Applied Optics, Vol. 44, Issue 33, pp. 7161-7169 (2005)
http://dx.doi.org/10.1364/AO.44.007161


View Full Text Article

Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a theory of quasi-three-level laser ions, we obtained the optimum thickness of the gain medium of Yb:YAG. For the parameters of the oscillator and the amplifier of the diode-pumped Lucia laser (Lasers Ultra-Courts et Intense et Applications), which will deliver a 100 J, 10 Hz, 10 ns pulse train the optimum thicknesses are, respectively, 1.4 and 1.6 mm, with a concentration of 10 at. %. Simulations indicate that the bending of such a thin medium is great but can be eliminated by substitution of a composite gain medium. The optimum thickness of undoped YAG is related to that of Yb:YAG and is also dependent on cooling conditions. Results show that, for a small-aperture oscillator, we can obtain both minimum bending and optical distortion at several doping concentrations. However, greater doping (∼20 at. %) is preferred for a large-aperture amplifier. The results reported will be helpful for the design of gain media for high-average-power thin disk Yb:YAG lasers.

© 2005 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Citation
Haiwu Yu and Gilbert Bourdet, "Thickness optimization of the composite gain medium for the oscillator and amplifier of the Lucia laser," Appl. Opt. 44, 7161-7169 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-33-7161


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, and Z. Zhao, "Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diode-pumped solid state laser," in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman and R. K. Short, eds., Proc. SPIE 5707, 105-116 (2005). [CrossRef]
  2. A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, and L. Zapata, "Mercury: next generation laser for high energy density physics SI-014," Rep. UCRL-ID-139294 (Lawrence Livermore National Laboratory, 2000).
  3. J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, and W. Winizer, "Diode-pumped chirped pulse amplifiers to the joule level," Appl. Phys. B 79, 419-422 (2004). [CrossRef]
  4. G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials," Opt. Commun. 200, 331-342 (2001). [CrossRef]
  5. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, "Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet," J. Opt. Soc. Am. B 20, 1975-1979 (2003).
  6. Z. Zhao, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road Jiading, P.O. Box 800-211, 201800 Shanghai, China (personal communication, 2005).
  7. G. L. Bourdet, "Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror," Appl. Opt. 44, 1018-1027 (2005). [CrossRef]
  8. T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993). [CrossRef]
  9. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 83, 1355-1357 (2003). [CrossRef]
  10. F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, and R. Equall, "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001). [CrossRef]
  11. S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, and A. Giesen, "Optical properties of epitaxial YAG:Yb films," Phys. Status Solidi A 201, 791-797 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited