OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7187–7190

Far-field intensity distribution and M2 factor of hollow Gaussian beams

Degang Deng, Xiaoyong Fu, Chaoyang Wei, Jianda Shao, and Zhengxiu Fan  »View Author Affiliations


Applied Optics, Vol. 44, Issue 33, pp. 7187-7190 (2005)
http://dx.doi.org/10.1364/AO.44.007187


View Full Text Article

Enhanced HTML    Acrobat PDF (69 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The far-field intensity distribution of hollow Gaussian beams was investigated based on scalar diffraction theory. An analytical expression of the M2 factor of the beams was derived on the basis of the second-order moments. Moreover, numerical examples to illustrate our analytical results are given.

© 2005 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4830) Optical design and fabrication : Systems design
(350.5500) Other areas of optics : Propagation

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: March 29, 2005
Manuscript Accepted: June 20, 2005
Published: November 20, 2005

Citation
Degang Deng, Xiaoyong Fu, Chaoyang Wei, Jianda Shao, and Zhengxiu Fan, "Far-field intensity distribution and M2 factor of hollow Gaussian beams," Appl. Opt. 44, 7187-7190 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-33-7187


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Borghi, M. Santarsiero, “M2 factor of Bessel Gauss beams,” Opt. Lett. 22, 262–264 (1997). [CrossRef] [PubMed]
  2. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  3. Yu. B. Ovchinnikov, I. Manek, R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997). [CrossRef]
  4. Y. Song, D. Milam, W. T. Hill, “Long, narrow all-light atom guide,” Opt. Lett. 24, 1805–1807 (1999). [CrossRef]
  5. J. Soding, R. Grimm, Yu. B. Ovchinnikov, “Gravitational laser trap for atoms with evanescent-wave cooling,” Opt. Commun. 119, 652–662 (1995). [CrossRef]
  6. J. Yin, Y. Zhu, W. Jhe, Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509–513 (1998). [CrossRef]
  7. X. Xu, Y. Wang, W. Jhe, “Theory of atom guidance in a hollow laser beam: dressed-atom approach,” J. Opt. Soc. Am. B 17, 1039–1050 (2000). [CrossRef]
  8. V. I. Balykin, V. S. Letokhov, “The possibility of deep laser focusing of an atomic beam into the AA-region,” Opt. Commun. 64, 151–156 (1987). [CrossRef]
  9. J. Arlt, K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  10. A. A. Tovar, “Propagation of flat-topped multi-Gaussian laser beams,” J. Opt. Soc. Am. A 18, 1897–1904 (2001). [CrossRef]
  11. K. Zhu, H. Tang, X. Sun, X. Wang, T. Liu, “Flattened multi-Gaussian light beams with an axial shadow generated through superposing Gaussian beams,” Opt. Commun. 207, 29–34 (2002). [CrossRef]
  12. K. Zhu, H. Tang, X. Wang, T. Liu, “Flattened light beams with an axial shadow generated through superposing cosh-Gaussian beams,” Optik (Weimar) 113, 222–226 (2002). [CrossRef]
  13. Y. Cai, X. Lu, Q. Lin, “Hollow Gaussian beam and its propagation,” Opt. Lett. 28, 1084–1086 (2003). [CrossRef] [PubMed]
  14. Y. Cai, Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21, 1058–1065 (2004). [CrossRef]
  15. A. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Hollems, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]
  16. I. S. Gradshtein, I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, 1980).
  17. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  18. A. Erdelyi, W. Magnus, F. Oberhettinger, Tables of Integral Transforms (McGraw-Hill, 1954).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited