OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7210–7217

Intensity-modulated, stepped frequency cw lidar for distributed aerosol and hard target measurements

Marc L. Simpson, Meng-Dawn Cheng, Thang Q. Dam, Katey E. Lenox, Jeff R. Price, John M. Storey, Eric A. Wachter, and Walt G. Fisher  »View Author Affiliations

Applied Optics, Vol. 44, Issue 33, pp. 7210-7217 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact frequency-modulated, continuous wave (FM-cw) lidar system for measurement of distributed aerosol plumes and hard targets is presented. The system is based on intensity modulation of a laser diode and quadrature detection of the return signals. The advantages of using laser diode amplitude modulation and quadrature detection is a large reduction in the hardware required for processing and storing return signals as well as the availability of off-the-shelf integrated electronic components from the wireless and telecommunication communities. Equations to invert the quadrature signal components and determine spatial distributions of multiple targets are derived. Spatial scattering intensities are used to extract aerosol backscatter coefficients, which can then be directly compared to microphysics aerosol models for environmental measurements. Finally, results from laboratory measurements with a monostatic FM-cw lidar system with both hard targets and aerosols are discussed.

© 2005 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1100) Remote sensing and sensors : Aerosol detection
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles

ToC Category:
Remote Sensing

Original Manuscript: February 14, 2005
Revised Manuscript: June 29, 2005
Manuscript Accepted: July 4, 2005
Published: November 20, 2005

Marc L. Simpson, Meng-Dawn Cheng, Thang Q. Dam, Katey E. Lenox, Jeff R. Price, John M. Storey, Eric A. Wachter, and Walt G. Fisher, "Intensity-modulated, stepped frequency cw lidar for distributed aerosol and hard target measurements," Appl. Opt. 44, 7210-7217 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. E. Lenox, A. Akerman, C. W. Ayers, T. Q. Dam, S. Goedeke, R. N. McGill, J. M. Storey, M. Cheng, R. K. Richards, M. L. Simpson, W. G. Fisher, E. A. Wachter, “Further development of remote sensing instrumentation for NOx and PM emissions from heavy duty trucks,” in Proceedings Air and Waste Management 96th Annual Conference, A. Knopes, ed. (Air and Waste Management Association, 2003), paper 69731.
  2. J. E. Nettleton, B. W. Schilling, D. N. Barr, J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39, 2428–2432 (2000). [CrossRef]
  3. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, A. Wallace, “Optical design of three-dimensional imaging and ranging system based on time-correlated, single-photon counting,” Appl. Opt. 41, 1063–1070 (2002). [CrossRef] [PubMed]
  4. M. Bashkansky, H. R. Burris, E. E. Funk, R. Mahon, C. I. Moore, “RF phase-coded random-modulation LIDAR,” Opt. Commun. 231, 93–98 (2004). [CrossRef]
  5. R. B. Chadwick, R. G. Strauch, “Processingof FM-cw Doppler radar signals from distributed targets,” IEEE Trans. Aerosp. Electron. Syst. AES-15, 185–188 (1979). [CrossRef]
  6. M. L. Simpson, C. A. Bennett, M. S. Emery, D. P. Hutchinson, G. H. Miller, R. K. Richards, D. N. Sitter, “Coherent imaging with two-dimensional focal-plane arrays: design and application,” Appl. Opt. 36, 6913–6920 (1997). [CrossRef]
  7. B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270– 3278, (1996). [CrossRef]
  8. B. Stann, A. Abou-Auf, K. Aliberti, M. Giza, B. Ovrebo, W. Ruff, D. Simon, M. Stead, “Research progress on scannerless ladar systems using a laser diode transmitter and FM/cw radar principles,” in Aerosense 2002 Laser Radar Technology and Applications VII, G. W. Kamerman, ed., Proc. SPIE47234723–4733, (2002).
  9. R. L. Schmitt, R. J. Williams, J. D. Matthews, “High-frequency scannerless imaging laser radar for industrial inspection and measurement applications,” (Sandia National Laboratory, 1996). [CrossRef]
  10. E. Hecht, Optics (Addison-Wesley, 1987), pp. 12–21 and 246–247.
  11. A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1989), pp. 514–561.
  12. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, 1978), p. 181.
  13. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  14. W. K. Pratt, Laser Communications Systems (Wiley, 1969), pp. 178–183.
  15. J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996). [CrossRef] [PubMed]
  16. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, 1998), p. 1118.
  17. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), p. 589.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited