OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7232–7238

Excited-state absorption and anisotropy properties of two-photon absorbing fluorene derivatives

Kevin D. Belfield, Mykhailo V. Bondar, I. Cohanoschi, Florencio E. Hernandez, Oleksiy D. Kachkovsky, Olga V. Przhonska, and Sheng Yao  »View Author Affiliations

Applied Optics, Vol. 44, Issue 33, pp. 7232-7238 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electronic structure of fluorene derivatives N-(7-benzothiazol-2-yl-9,9-bis-decyl-9H-fluoren-2-yl)-acetamide (1); 9,9-didecyl-2,7-bis-(N,N-benzothiazoyl)fluorene (2); 4,4′-{[9,9-bis(ethyl)-9H-fluorene-2,7-diyl]di-2,1-ethenediyl}bis(N,N-diphenyl)benzeneamine (3); and 4,4′,4″{[9,9-bis(ethyl)-9H-fluorene-2,4,7-triyl]tri-2,1-ethenediyl}tris(N,N-diphenyl)benzeneamine (4) were investigated by a steady-state spectral technique, quantum-chemical calculations, and a picosecond pump–probe method. These derivatives are of interest for their relatively high two-photon absorption. The steady-state excitation anisotropy spectra reveal the nature of the ground-state absorption bands. Semiempirical quantum-chemical calculations of the fluorene derivatives (AM1, ZINDO/S) show good agreement with experimental data. The spectral positions and alignment of various electronic transitions of derivatives 1–4 were estimated from their excited-state absorption and anisotropy spectra.

© 2005 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.4480) Lasers and laser optics : Optical amplifiers
(160.3380) Materials : Laser materials
(160.4890) Materials : Organic materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:

Original Manuscript: May 3, 2005
Manuscript Accepted: July 22, 2005
Published: November 20, 2005

Kevin D. Belfield, Mykhailo V. Bondar, I. Cohanoschi, Florencio E. Hernandez, Oleksiy D. Kachkovsky, Olga V. Przhonska, and Sheng Yao, "Excited-state absorption and anisotropy properties of two-photon absorbing fluorene derivatives," Appl. Opt. 44, 7232-7238 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-H. Hu, H. Röckel, S. R. Marder, J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997). [CrossRef]
  2. G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995). [CrossRef]
  3. Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001). [CrossRef]
  4. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989). [CrossRef] [PubMed]
  5. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991). [CrossRef] [PubMed]
  6. K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000). [CrossRef]
  7. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  8. E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998). [CrossRef]
  9. K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002). [CrossRef]
  10. F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994). [CrossRef]
  11. T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998). [CrossRef]
  12. G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002). [CrossRef]
  13. K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003). [CrossRef]
  14. P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002). [CrossRef]
  15. P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002). [CrossRef]
  16. H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978). [CrossRef]
  17. A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980). [CrossRef]
  18. O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001). [CrossRef]
  19. R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003). [CrossRef]
  20. T. W. Hagler, “Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymer films,” Chem. Phys. Lett. 218, 195–199 (1994). [CrossRef]
  21. P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992). [CrossRef]
  22. K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004). [CrossRef]
  23. K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004). [CrossRef]
  24. S. Yao, K. D. Belfield, “Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris-(bromomethylation) of fluorene,” J. Org. Chem. (to be published).
  25. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited