OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 34 — Dec. 1, 2005
  • pp: 7275–7281

Assessment of refractive index gradients by standard rainbow thermometry

Maria Rosaria Vetrano, Jeronimus Petrus Antonius Johannes van Beeck, and Michel Léon Riethmuller  »View Author Affiliations

Applied Optics, Vol. 44, Issue 34, pp. 7275-7281 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1052 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Up to now the application of rainbow thermometry has been limited to particle systems possessing a uniform refractive index. This is mostly due to the absence of an appropriate data inversion algorithm that takes into account the presence of a refractive index gradient. In this paper, for the first time to our knowledge, exploiting a generalization of the Airy theory, a data inversion algorithm for a single droplet, presenting a parabolic refractive index gradient, is proposed. This data inversion algorithm is used to compute the diameter and the refractive index at the core and at the surface of a simulated burning droplet. The results are compared to the analytical solutions showing a satisfactory agreement.

© 2005 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6780) Instrumentation, measurement, and metrology : Temperature
(290.5850) Scattering : Scattering, particles

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 20, 2005
Revised Manuscript: May 23, 2005
Manuscript Accepted: June 2, 2005
Published: December 1, 2005

Maria Rosaria Vetrano, Jeronimus Petrus Antonius Johannes van Beeck, and Michel Léon Riethmuller, "Assessment of refractive index gradients by standard rainbow thermometry," Appl. Opt. 44, 7275-7281 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. A. J. van Beeck, D. Giannoulis, L. Zimmer, M. L. Riethmuller, “Global rainbow thermometry for droplet-temperature measurement,” Opt. Lett. 24, 1696–1698 (1999). [CrossRef]
  2. N. Roth, K. Anders, A. Frohn, “Simultaneous measurement of temperature and size of droplets in the micro-metric range,” J. Laser Appl. 2, 37–42 (1990). [CrossRef]
  3. S. V. Sankar, D. H. Buermann, W. D. Bachalo, “An advanced Rainbow signal processor for improved accuracy in droplet measurement,” presented at the Eighth International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 1996.
  4. J. P. A. J. van Beeck, M. L. Riethmuller, “Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity,” Appl. Opt. 35, 2259–2266 (1996). [CrossRef] [PubMed]
  5. C. L. Adler, J. A. Lock, I. P. Rafferty, W. Hickok, “Twin-rainbow metrology. I. Measurement of the thickness of a thin liquid film draining under gravity,” Appl. Opt. 42, 6584–6594 (2003). [CrossRef] [PubMed]
  6. C. L. Adler, J. A. Lock, J. K. Nash, K. W. Saunders, “Experimental observation of rainbow scattering by a coated cylinder: twin primary rainbows and thin-film interference,” Appl. Opt. 40, 1548– 1558 (2001). [CrossRef]
  7. J. A. Lock, J. M. Jamison, C.-Y. Lin, “Rainbow scattering by a coated sphere,” Appl. Opt. 33, 4677–4691 (1994). [CrossRef] [PubMed]
  8. F. Onofri, G. Grehan, G. Gousbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995). [CrossRef] [PubMed]
  9. Y. P. Han, L. Méès, K. F. Ren, G. Gouesbet, S. Z. Wu, G. Gréhan, “Scattering light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002). [CrossRef]
  10. Y. P. Han, G. Gréhan, G. Gouesbet, “Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussianbeam illumination,” Appl. Opt. 42, 6621–6629 (2003). [CrossRef] [PubMed]
  11. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  12. M. R. Vetrano, J. van Beeck, M. Riethmuller, “Generalization of the rainbow Airy theory to nonuniform spheres,” Opt. Lett. 30, 658–660 (2005). [CrossRef] [PubMed]
  13. P. Massoli, “Rainbow refractometry to radially inhomogeneous spheres: the critical case of evaporating droplets,” Appl. Opt. 37, 3227–3235 (1998). [CrossRef]
  14. L. A. Dombrovsky, S. S. Sazih, “A simplified nonisothermal model for droplet heating and evaporation,” Int. Commun. Heat Mass Transfer 30, 787–796 (2003). [CrossRef]
  15. M. R. Vetrano, J. van Beeck, M. Riethmuller, “Global rainbow thermometry: improvements in the data inversion algorithm and validation technique in liquid–liquid suspension,” Appl. Opt. 43, 3600–3607 (2004). [CrossRef] [PubMed]
  16. C. K. Law, “Unsteady droplet combustion with droplet heating,” Combust. Flame 26, 17–22 (1976). [CrossRef]
  17. C. K. Law, W. A. Sirignano, “Unsteady droplet combustion with droplet heating-II: conduction limit,” Combust. Flame 28, 175–186 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited