OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 34 — Dec. 1, 2005
  • pp: 7295–7301

Plasma interferometry and how the bound-electron contribution can bend fringes in unexpected ways

Joseph Nilsen and Walter R. Johnson  »View Author Affiliations

Applied Optics, Vol. 44, Issue 34, pp. 7295-7301 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Utilizing a new average atom code, we calculate the index of refraction in C, Al, Ti, and Pd plasmas and show many conditions over which the bound-electron contribution dominates the free electrons as we explore photon energies from the optical to 100 eV (12 nm) soft x rays. For decades measurement of the electron density in plasmas by interferometers has relied on the approximation that the index of refraction in a plasma is due solely to the free electrons and therefore is less than 1. Recent measurements of Al plasmas using x-ray laser interferometers observed fringes bending in the opposite direction than expected due to the bound-electron contribution causing the index of refraction to be larger than 1. During the next decade x-ray free-electron lasers and other sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths, so understanding the index of refraction in plasmas is essential.

© 2005 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5710) Instrumentation, measurement, and metrology : Refraction
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(340.7450) X-ray optics : X-ray interferometry

ToC Category:

Original Manuscript: February 17, 2005
Revised Manuscript: April 28, 2005
Manuscript Accepted: May 6, 2005
Published: December 1, 2005

Joseph Nilsen and Walter R. Johnson, "Plasma interferometry and how the bound-electron contribution can bend fringes in unexpected ways," Appl. Opt. 44, 7295-7301 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Tallents, “Interferometry and refraction measurements in plasmas of elliptical cross section,” J. Phys. D 17, 721–732 (1984). [CrossRef]
  2. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, 1997), p. 9.
  3. L. B. Da Silva, T. W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, F. Weber, “Electron-density measurements of high-density plasmas using soft x-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995). [CrossRef] [PubMed]
  4. H. Tang, O. Guilbaud, G. Jamelot, D. Ros, A. Klisnick, D. Joyeux, D. Phalippou, M. Kado, M. Nishikino, M. Kishimoto, K. Sukegawa, M. Ishino, K. Nagashima, H. Daido, “Diagnostics of laser-induced plasma with soft x-ray (13.9 nm) bimirror interference microscopy,” Appl. Phys. B 78, 975–977 (2004). [CrossRef]
  5. J. Filevich, J. J. Rocca, M. C. Marconi, S. J. Moon, J. Nilsen, J. H. Scofield, J. Dunn, R. F. Smith, R. Keenan, J. R. Hunter, V. N. Shlyaptsev, “Observation of a multiply ionized plasma with index of refraction greater than one,” Phys. Rev. Lett. 94, 035005 (2004). [CrossRef]
  6. J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356–358 (2000). [CrossRef]
  7. D. Descamps, C. Lyngå, J. Norin, A. L’Hullier, C.-G. Wahl-ström, J.-F. Hergott, H. Merdji, P. Salières, M. Bellini, T. W. Hänsch, “Extreme ultraviolet interferometry measurements with high-order harmonics,” Opt. Lett. 25, 135–137 (2000). [CrossRef]
  8. J. Nilsen, J. H. Scofield, Plasmas with an index of refraction greater than one,” Opt. Lett. 29, 2677–2679 (2004). [CrossRef] [PubMed]
  9. D. A. Liberman, “Inferno: A better model of atoms in dense plasmas,” J. Quant. Spectrosc. Radiat. Transfer 27, 335–399 (1982). [CrossRef]
  10. W. R. Johnson, C. Guet, G. F. Bertsch, “Optical properties of plasmas based on an average-atom model,” J. Quant. Spectrosc. Radiat. Transf. (to be published).
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, 1980), pp. 90–98.
  12. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). [CrossRef]
  13. D. A. Greenwood, “The Boltzmann equation in the theory of electrical conduction in metals,” Proc. Phys. Soc. 71, 585–596 (1958). [CrossRef]
  14. R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957). [CrossRef]
  15. M. P. Desjarlais, J. D. Kress, L. A. Collins, “Electrical conductivity for warm dense aluminum plasmas and liquids,” Phys. Rev. E 66, 025401 (2002). [CrossRef]
  16. V. Recoules, P. Renaudin, J. Clèouin, P. Noiret, G. Zèrah, “Electrical conductivity of hot expanded aluminum: experimental measurements and ab initio calculations,” Phys. Rev. E 66, 056412 (2002). [CrossRef]
  17. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984), pp. 280–283.
  18. R. L. Kelley, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data Suppl. 1, 16 (American Institute of Physics, 1987), p. 223.
  19. J. Nilsen, B. J. MacGowan, L. B. Da Silva, J. C. Moreno, Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993). [CrossRef] [PubMed]
  20. R. F. Smith, J. Dunn, J. Filevich, S. Moon, J. Nilsen, R. Keenan, V. N. Shlyaptsev, J. J. Rocca, J. R. Hunter, M. C. Marconi, “Plasma conditions for improved energy coupling into the gain region of the Ni-like Pd transient collisional x-ray laser,” Phys. Rev. E 72, 036404 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited