OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 34 — Dec. 1, 2005
  • pp: 7378–7393

Reevaluation of the quondam dust trend in the middle atmosphere

Miroslav Kocifaj and Helmuth Horvath  »View Author Affiliations

Applied Optics, Vol. 44, Issue 34, pp. 7378-7393 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quondam lunar eclipse photometry data offered valuable information on the optical properties of the middle atmosphere, including dust particles. However, in comparison with nonspherical grains, the simple model of spherical particles has a different effect on solar radiation penetrating horizontally through the atmosphere. It is shown that the systems, in which the smallest size fraction of dust particles dominates, reduce irradiation of the Earth’s shadow more efficiently if the grains are of irregular shape. In contrast, the populations contaminated by a certain amount of large particles cause an opposite effect. Depending on the actual form of the size distribution function of the irregular grains, the irradiance within the center of the Earth’s shadow may change by 2 orders of magnitude in the visible spectrum. It is therefore evident that dust properties retrieved in the past are eligible candidates for reevaluation to correct a view on the dust trend in the middle atmosphere. Sample calculations are presented for the lunar eclipse observed on 19 January 1954.

© 2005 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(290.2200) Scattering : Extinction

ToC Category:
Atmospheric and oceanic optics

Original Manuscript: November 2, 2004
Revised Manuscript: April 15, 2005
Manuscript Accepted: April 20, 2005
Published: December 1, 2005

Miroslav Kocifaj and Helmuth Horvath, "Reevaluation of the quondam dust trend in the middle atmosphere," Appl. Opt. 44, 7378-7393 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Yu. V. Platov, G. N. Kulikova, S. A. Chernouss, “Classification of gas-dust structures in the upper atmosphere associated with the exhausts of rocket-engine combustion products,” Cosmic Res. 41, 153–158 (2003). [CrossRef]
  2. F. J. M. Rietmeijer, “Identification of Fe-rich meteoric dust,” Planet. Space Sci. 49, 71–77 (2001). [CrossRef]
  3. F. L. Whipple, “On meteor masses and densities,” Astron. J. 57, 28–29 (1952). [CrossRef]
  4. J. Rosinski, J. M. Pierrard, “Condensation products of meteor vapors and their connection with noctilucent clouds and rainfall anomalies,” J. Atmos. Terr. Phys. 26, 51–66 (1964). [CrossRef]
  5. A. Dauvillier, “Sur la brillance de la Lune eclipsee,” Moon 15, 325–328 (1976). [CrossRef]
  6. A. P. Jones, “Modeling interstellar extinction—I. Porous grains,” Mon. Not. R. Astron. Soc. 234, 209–218 (1988).
  7. J. M. Hahn, H. A. Zook, B. Cooper, B. Sunkara, “Clementine observations of the zodiacal light and the dust content of the inner solar system,” Icarus 158, 360–378 (2002). [CrossRef]
  8. D. E. Brownlee, D. J. Joswiak, S. G. Love, A. O. Nier, D. J. Schlutter, J. P. Bradley, “Identification of cometary and asteroidal particles in stratospheric IDP collections,” Lunar Planet. Sci. 24, 205–206 (1993).
  9. R. P. Turco, O. B. Toon, R. C. Whitten, R. G. Keesee, D. Hollenbach, “Noctilucent clouds: simulation studies of the genesis, properties and global influences,” Planet Space Sci. 30, 1147–1181 (1982). [CrossRef]
  10. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles (Academic, 2000).
  11. F. Link, “Photométrie photographique de l’éclipse de Lune du 19 décembre 1945,” Bull. Astron. Inst. Czech. 1, 13–16 (1948).
  12. F. Link, Eclipse Phenomena in Astronomy (Springer, 1969). [CrossRef]
  13. S. Matsushima, J. R. Zink, J. E. Hansen, “Atmospheric extinction by dust particles as determined from three-color photometry of the lunar eclipse of 19 December 1964,” Astron. J. 71, 103–110 (1966). [CrossRef]
  14. N. Sekiguchi, “Abnormally dark lunar eclipse on December 30, 1982,” Moon Planets 29, 195–198 (1983). [CrossRef]
  15. A. Mallama, “Two celestial visibility projects: (1) the brightness of an eclipsed moon and (2) the phase anomaly of venus,” Bull. Am. Astron. Soc. 25, 1334 (1993).
  16. F. Link, Die Mondfinsternisse (Akademische Verlagsgesellschaft, Geest & Portig K.-G., 1956).
  17. B. R. Stothers, “Stratospheric transparency derived from total lunar eclipse colors, 1665–1800,” Publ. Astron. Soc. Pacific 116, 886–893 (2004). [CrossRef]
  18. J. Bouška, P. Mayer, “Photoelectric observation of the lunar eclipse of June 24–25, 1964,” Bull. Astron. Inst. Czech. 16, 252–254 (1965).
  19. J. Bouška, P. Mayer, “Photoelectric photometry of the penumbral lunar eclipse of September 25, 1969,” Bull. Astron. Inst. Czech. 23, 139–143 (1972).
  20. T. Nakamura, T. Hirayama, M. Noguchi, “A new photographic method for mapping lunar eclipse shadow,” Earth, Moon, Planets 35, 55–71 (1986). [CrossRef]
  21. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  22. E. Raschke, Terminology and Units of Radiation Quantities and Measurements, The International Association of Meteorology and Atmospheric Physics (IAMAP), Radiation Commission, 1978 (Available from Secretary General, IAMAP, c/o NCAR, P.O. Box 3000, Boulder, Colo. 80307).
  23. H. Horvath, “Remarks and suggestions on nomenclature and symbols in atmospheric optics,” Atmosph. Environ. 28, 757–759 (1994). [CrossRef]
  24. L. Gu, J. D. Fuentes, M. Garstang, J. T. Da Silva, R. Heitz, J. Sigler, H. H. Shugart, “Cloud modulation of surface solar irradiance at a pasture site in southern Brazil,” Agric. Forest Meteorol. 106, 117–129 (2001). [CrossRef]
  25. F. Link, “Eclipse phenomena,” in Advances in Astronomy and Astrophysics, Zdeněk Kopal, ed. (Academic, 1963), Vol. 2. [CrossRef]
  26. V. N. Lebedinets, Aerosol in the Upper Atmosphere and Interlanetary Dust (Gidrometeoizdat, 1981) (in Russian).
  27. A. Ye. Mikirov, V. A. Smerkalov, Study of the Scattered Radiation in the Earth’s Upper Atmosphere (Gidrometeoizdat, 1981) (in Russian).
  28. L. H. Auer, E. M. Standish, “Astronomical refraction: computational method for all zenith angles,” Astrophys. J. 119, 2472–2474 (2000).
  29. V. E. Zuev, G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, 1986) (in Russian).
  30. L. M. Celnikier, “Understanding the physics of meteoritic descent,” Am. J. Phys. 63, 524–535 (1995). [CrossRef]
  31. E. J. McCartney, Optics of the Atmosphere (Wiley, 1977).
  32. E. Borghese, P. Denti, G. Toscano, O. I. Sindoni, “Electromagnetic scattering by a cluster of spheres,” Appl. Opt. 18, 116–120 (1979). [CrossRef] [PubMed]
  33. H. Horvath, C. Dellago, “On the accuracy of the size distribution information obtained from light extinction and scattering measurements—II. Case studies,” J. Aerosol Sci. 24, 143–154 (1993). [CrossRef]
  34. K. Chamaillard, J. P. J. Lafon, “Statistical approach of the effects of roughness on the polarization of light scattered by dust grains,” J. Quant. Spectrosc. Radiat. Transfer 70, 519–528 (2001). [CrossRef]
  35. I. Kapišinský, V. Figusch, A. Hajduk, J. Ivan, K. Iždinský, “The analysis of four cosmic dust particles,” Earth, Moon, Planets 68, 347–360 (1995). [CrossRef]
  36. V. S. Clanton, J. L. Gooding, D. S. McKay, G. A. Robinson, J. L. Warren, L. A. Watts, eds. Cosmic Dust Catalog (Particles from Collection Flag U2015) (NASA, Johnson Space Center, Houston, Tex., 1984), Vol. 5(1), p. 10.
  37. K. Okada, A. Kobayashi, Y. Iwasaka, H. Naruse, T. Tanaka, O. Nemoto, “Features of individual Asian dust-storm particles collected at Nagoya, Japan,” J. Meteorol. Soc. Jpn. 65, 515–521 (1987).
  38. M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Nonsphericity of dustlike tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995). [CrossRef]
  39. B. T. Draine, P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code ddscat.6.0,” Freeware (2003).
  40. T. Wriedt, U. Comberg, “Comparison of computational scattering methods,” J. Quant. Spectrosc. Radiat. Transfer 60, 411–423 (1998). [CrossRef]
  41. P. A. Yanamandra-Fisher, M. S. Hanner, “Optical properties of nonspherical particles of size comparable to the wavelength of light: application to comet dust,” Icarus 138, 107–128 (1999)[Icarus 139, 388–389(E) (1999)]. [CrossRef]
  42. L. Kolokolova, B. Å. S. Gustafson, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611–625 (2001). [CrossRef]
  43. Z. Ceplecha, P. Spurný, J. Borovička, J. Keclíková, “Atmospheric fragmentation of meteoroids,” Astron. Astrophys. 279, 615–626 (1993).
  44. J. Borovička, O. P Popova, I. V. Nemtchinov, P. Spurný, Z. Ceplecha, “Bolides produced by impacts of large meteoroids into the Earth’s atmosphere: comparison of theory with observations. I. Benešov bolide dynamics and fragmentation,” Astron. Astrophys. 334, 713–728 (1998).
  45. M. Kocifaj, “Analytical solution of the extended single-body problem and its applications,” Contrib. Astron. Obs. Skalnaté Pleso 32, 25–38 (2002).
  46. W. J. Baggaley, “The size distribution of large meteor bodies,” Bull. Astron. Inst. Czech. 29, 57–59 (1978).
  47. M. Gadsden, W. Schröder, Noctilucent Clouds (Springer, 1989). [CrossRef]
  48. G. E. Thomas, C. P. McKay, “On the mean particle size and water content of polar mesospheric clouds,” Planet. Space Sci. 33, 1209–1224 (1985). [CrossRef]
  49. J. Gumbel, J. Stegman, D. P. Murtag, G. Witt, “Scattering phase functions and particle sizes in noctilucent clouds,” Geophys. Res. Lett. 28, 1415–1418 (2001). [CrossRef]
  50. V. M. Zolotarev, V. N. Morozov, E. V. Smirnova, Optical Constants of the Natural and Technical Media (Khimia, 1984) (in Russian).
  51. R. M. Schotland, T. K. Lea, “Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol,” Appl. Opt. 25, 2486–2491 (1986). [CrossRef] [PubMed]
  52. A. Borovoi, E. Naats, U. Oppel, I. Grishin, “Shape characterization of a large nonspherical particle by use of its Fraunhofer diffraction pattern,” Appl. Opt. 39, 1989–1997 (2000). [CrossRef]
  53. A. A. Lacis, M. I. Mishchenko, “Climate forcing, climate sensitivity, and climate response: a radiative modeling perspective on atmospheric aerosols,” in Aerosol Forcing of Climate: Report of the Dahlem Workshop on Aerosol Forcing of Climate, R. J. Charlson, J. Heintzenberg, eds. (Wiley, New York, 1994).
  54. Z. Ceplecha, “Influx of interplanetary bodies onto Earth,” Astron. Astrophys. 263, 361–366 (1992).
  55. G. A. Graham, A. T. Kearsley, M. M. Grady, I. P. Wright, J. A. M. McDonnell, “The collection of micrometeoroid remnants from low earth orbit,” Adv. Space Res. 25, 303–307 (1999). [CrossRef]
  56. J. L. Gooding, M. E. Zolensky, S. J. Wentworth, “Aqueous alteration of the Nakhla meteorite,” Meteoritics 26, 135–143 (1991). [CrossRef]
  57. J. D. MacDougall, “Refractory spherules in the Murchison meteorite—are they chondrules,” Geophys. Res. Lett. 8, 966–969 (1981). [CrossRef]
  58. M. Hansa, “Collections of the meteoric dust during Perseids,” Bull. Astron. Inst. Czech. 11, 236–242 (1958).
  59. F. Link, Katalog Měsíčních zatmění 1921–1954 (CSAV, Praha, 1956).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited