OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 34 — Dec. 1, 2005
  • pp: 7475–7482

Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer

Koji Asakawa and Akira Fujimoto  »View Author Affiliations

Applied Optics, Vol. 44, Issue 34, pp. 7475-7482 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new fabrication method to improve the optical extraction efficiency of light-emitting devices is presented. The morphology of a self-assembled block copolymer was transferred to the surface of a compound semiconductor to achieve a subwavelength columnar structure. The optical extraction efficiency of the substrates with subwavelength columnar structures of 350 nm pillar height, 130 nm diameter, and 180 nm pitch, improved 2.2 times compared to unprocessed substrates. This method does not require expensive exposure lithography tools and is therefore suitable for conventional semiconductor processes.

© 2005 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(230.1950) Optical devices : Diffraction gratings
(230.3670) Optical devices : Light-emitting diodes
(230.4000) Optical devices : Microstructure fabrication
(240.6700) Optics at surfaces : Surfaces

ToC Category:
Optical Devices

Original Manuscript: April 18, 2005
Revised Manuscript: June 30, 2005
Manuscript Accepted: July 1, 2005
Published: December 1, 2005

Koji Asakawa and Akira Fujimoto, "Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer," Appl. Opt. 44, 7475-7482 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. K. Krames, H. Amano, J. J. Brown, P. L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 185–188 (2002). [CrossRef]
  2. K. Streubel, N. Linder, R. Wirth, A. Jaeger, “High brightness AlGalnP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321–332 (2002). [CrossRef]
  3. I. Akasaki, “Nitride semiconductors—impact on the future world,” J. Cryst. Growth 237–239, 905–911 (2002). [CrossRef]
  4. R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002). [CrossRef]
  5. M. E. Warren, R. E. Smith, G. A. Vawter, J. R. Wendt, “High-efficiency subwavelength diffractive optical-element in GaAs for 975 nm,” Opt. Lett. 20, 1441–1443 (1995). [CrossRef] [PubMed]
  6. F. T. Chen, H. G. Craighead, “Diffractive phase elements based on two-dimensional artificial dielectrics,” Opt. Lett. 20, 121–123 (1995). [CrossRef] [PubMed]
  7. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999). [CrossRef]
  8. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys., Part 2 40, L747–L749 (2001). [CrossRef]
  9. Y. Kanamori, M. Sasaki, K. Hane, “Broadband antireflection gratings fabricated upon silicone substrate,” Opt. Lett. 24, 1422–1424 (1999). [CrossRef]
  10. Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000). [CrossRef]
  11. Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001). [CrossRef]
  12. T. Nakanishi, T Hiraoka, A. Fujimoto, K. Asakawa, “Nanopatterning using an embedded particle monolayer as an etch mask,” in Proceedings of the International 2004 Microprocess and Nanotechnology Conference, Osaka, Japan, 2004, pp. 300–301.
  13. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter,” Science 276, 1401–1404 (1997). [CrossRef]
  14. K. Asakawa, T. Hiraoka, “Nanopatterning with microdomains of block copolymers using reactiveion etching selectivity,” Jpn. J. Appl. Phys. Part 1 41, 6112–6118 (2002). [CrossRef]
  15. K. Asakawa, T. Hiraoka, Y. Akasaka, Y. Hotta, “Method for manufacturing porous structure and method for forming pattern,” U.S. patent6,565,763 (20May2003).
  16. K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002). [CrossRef]
  17. N. Naito, H. Hieda, M. Sakurai, Y. Kamata, K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method,” IEEE Trans. Magn. 38, 1949–1951 (2002). [CrossRef]
  18. K. Asakawa, A. Fujimoto, H. Sugiyama, K. Ohashi, K. Suzuki, J. Tonotani, “Light-emitting device and method for manufacturing the same,” U.S. patent6,825,056 (30November2004).
  19. M. G. Moharan, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  20. G. R. Strobl, The Physics of Polymers (Springer, 1997). [CrossRef]
  21. H. Gokan, S. Esho, Y. Ohnishi, “Dry etch resistance of organic materials,” J. Electrochem. Soc. 130, 143–146 (1983). [CrossRef]
  22. J. Brandrup, Polymer Handbook (Wiley, 1999).
  23. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953).
  24. A. M. Mayers, T. P. Russell, S. K. Satija, C. F. Majkrzak, “Homopolymer distribution in ordered block copolymers,” Macromolecules 25, 6523–6531 (1992). [CrossRef]
  25. T. P. Russell, R. P. Hjelm, P. A. Seeger, “Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate),” Macromolecules 23, 890–893 (1990). [CrossRef]
  26. T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited