OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 35 — Dec. 10, 2005
  • pp: 7564–7572

Time-resolved Hadamard fluorescence imaging

Kai Hassler, Tiemo Anhut, and Theo Lasser  »View Author Affiliations

Applied Optics, Vol. 44, Issue 35, pp. 7564-7572 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (669 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new concept for fluorescence lifetime imaging (FLIM) based on time-resolved Hadamard imaging (HI). HI allows image acquisition by use of one single-point detector without requiring a moving scanning stage. Moreover, it reduces the influence of detector noise compared with raster scanning. By use of Monte Carlo simulations it could be confirmed that Hadamard transformation may decrease the error in lifetime estimation and in general in fluorescence parameter estimation when the signal-to-noise ratio is low and detector dark noise is high. This concept may find applications whenever the performance of FLIM or similar methods is limited by high dark-count rates and when the use of a single-point detector is preferable.

© 2005 Optical Society of America

OCIS Codes
(110.6980) Imaging systems : Transforms
(170.2520) Medical optics and biotechnology : Fluorescence microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 19, 2005
Manuscript Accepted: July 7, 2005
Published: December 10, 2005

Virtual Issues
Vol. 1, Iss. 1 Virtual Journal for Biomedical Optics

Kai Hassler, Tiemo Anhut, and Theo Lasser, "Time-resolved Hadamard fluorescence imaging," Appl. Opt. 44, 7564-7572 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. 35, R61–R76 (2002).
  2. S. Bambot, J. R. Lakowicz, G. Rao, “Potential applications of life-time-based, phase-modulation fluorometry in bioprocess and clinical monitoring,” Trends Biotechnol. 13, 106–115 (1995). [CrossRef] [PubMed]
  3. Bernard Valeur, Molecular Fluorescence (Wiley-VCH, 2002).
  4. H. Szmacinski, J. R. Lakowicz, “Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry,” Anal. Chem. 65, 1668–1674 (1993). [CrossRef] [PubMed]
  5. H. J. Lin, H. Szmacinski, J. R. Lakowicz, “Lifetime-based pH sensors: indicators for acidic environments,” Anal. Biochem. 269, 162–167 (1999). [CrossRef] [PubMed]
  6. M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, O. S. Wolfbeis, “Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier,” Anal. Chim. Acta 205, 1–6 (1988). [CrossRef]
  7. H. Szmacinski, J. R. Lakowicz, “Sodium green as a potential probe for intracellular sodium imaging based on fluorescence lifetime,” Anal. Biochem. 250, 131–138 (1997). [CrossRef] [PubMed]
  8. T. Q. Ni, L. A. Melton, “Fluorescence lifetime imaging—An approach for fuel equivalence ratio imaging,” Appl. Spectrosc. 45, 938–943 (1991). [CrossRef]
  9. G. Marriott, R. M. Clegg, D. J. Arndtjovin, T. M. Jovin, “Time resolved imaging microscopy—Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
  10. X. F. Wang, T. Uchida, D. M. Coleman, S. Minami, “A 2-dimensional fluorescence lifetime imaging-system using a gated image intensifier,” Appl. Spectrosc. 45, 360–366 (1991). [CrossRef]
  11. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999). [CrossRef]
  12. P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. N. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003). [CrossRef] [PubMed]
  13. D. Schweitzer, A. Kolb, M. Hammer, R. Anders, “Time-correlated measurement of autofluorescence. A method to detect metabolic changes in the fundus,” Ophthalmologe 99, 774–779 (2002). [CrossRef] [PubMed]
  14. G. Valentini, C. d’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi Bernardi, G. de Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000). [CrossRef]
  15. E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000). [CrossRef]
  16. H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206, 218–224 (2002). [CrossRef]
  17. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares, A. K. L. Dymoke Bradshaw, “Fluorescence lifetime imaging with picosecond resolution for biomedical applications,” Opt. Lett. 23, 810–812 (1998). [CrossRef]
  18. N. J. A. Sloane, M. Harwit, “Masks for Hadamard transform optics and weighing designs,” Appl. Opt. 15, 107–114 (1976). [CrossRef] [PubMed]
  19. M. Harwit, N. J. A. Sloane, Hadamard Transform Optics (Academic, 1979).
  20. P. Fellgett, “Conclusions on multiplex methods,” J. Phys. (Paris) 28, 165–171 (1967). [CrossRef]
  21. R. A. DeVerse, R. M. Hammaker, W. G. Fateley, “Hadamard transform Raman imagery with a digital micro-mirror array,” Vib. Spectrosc. 19, 177–186 (1999). [CrossRef]
  22. D. Phillips, D. V. O’Connor, Time-Correlated Single Photon Counting (Academic, 1984).
  23. M. Unser, M. Eden, “Maximum-likelihood estimation of linear signal parameters for Poisson processes,” IEEE Trans. Acoust. Speech Signal Process. 36, 942–945 (1988). [CrossRef]
  24. Z. Bajzer, T. M. Therneau, J. C. Sharp, F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. Lett. 20, 247–262 (1991). [CrossRef]
  25. M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).
  26. A. Papoulis, S. U. Pillai, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 2002).
  27. Q. S. Hanley, “Masking, photobleaching, and spreading effects in Hadamard transform imaging and spectroscopy systems,” Appl. Spectrosc. 55, 318–330 (2001). [CrossRef]
  28. G. Q. Chen, E. Mei, W. F. Gu, X. B. Zeng, Y. Zeng, “Instrument for Hadamard-transform 3-dimensional fluorescence microscope image analysis,” Anal. Chim. Acta 300, 261–267 (1995). [CrossRef]
  29. A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003). [CrossRef] [PubMed]
  30. M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002). [CrossRef] [PubMed]
  31. J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vlanclas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, P. M. W. French, “Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles,” Appl. Opt. 42, 2995–3004 (2003). [CrossRef] [PubMed]
  32. J. Enderlein, “Maximum-likelihood criterion and single-molecule detection,” Appl. Opt. 34, 514–526 (1995). [CrossRef] [PubMed]
  33. J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited