OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 35 — Dec. 10, 2005
  • pp: 7621–7629

Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing

Steven M. Beck, Joseph R. Buck, Walter F. Buell, Richard P. Dickinson, David A. Kozlowski, Nicholas J. Marechal, and Timothy J. Wright  »View Author Affiliations

Applied Optics, Vol. 44, Issue 35, pp. 7621-7629 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (924 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope’s aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.

© 2005 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(110.0110) Imaging systems : Imaging systems
(280.3640) Remote sensing and sensors : Lidar
(280.6730) Remote sensing and sensors : Synthetic aperture radar

ToC Category:
Image Processing

Original Manuscript: August 19, 2004
Revised Manuscript: August 10, 2005
Manuscript Accepted: July 18, 2005
Published: December 10, 2005

Steven M. Beck, Joseph R. Buck, Walter F. Buell, Richard P. Dickinson, David A. Kozlowski, Nicholas J. Marechal, and Timothy J. Wright, "Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing," Appl. Opt. 44, 7621-7629 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Hovenessian, An Introduction to Synthetic Aperture Array and Imaging Radars (Artech House, 1980).
  2. C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C. Ghiglia, P. A. Thompson, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach (Kluwer Academic, 1996). [CrossRef]
  3. A. V. Jelalian, Laser Radar Systems (Artech House, 1992).
  4. T. S. Lewis, H. S. Hutchins, “A synthetic aperture at optical frequencies,” Proc. IEEE 58, 587–588 (1970). [CrossRef]
  5. T. S. Lewis, H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781–1782 (1970). [CrossRef]
  6. C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987). [CrossRef]
  7. D. Park, J. H. Shapiro, “Performance analysis of optical synthetic aperture radars,” in Laser Radar III, R. J. Becherer, ed., Proc. SPIE999, 100–116 (1988). [CrossRef]
  8. S. Yoshikado, T. Aruga, “Feasibility study of synthetic aperture infrared laser radar techniques for imaging of static and moving objects,” Appl. Opt. 37, 5631–5639 (1998). [CrossRef]
  9. T. G. Kyle, “High resolution laser imaging system,” Appl. Opt. 28, 2651–2656 (1989). [CrossRef] [PubMed]
  10. R. L. Lucke, L. J. Rickard, “Photon-limited synthetic-aperture imaging for planet surface studies,” Appl. Opt. 41, 5084–5095 (2002). [CrossRef] [PubMed]
  11. A. B. Gschwendtner, W. E. Keicher, “Development of coherent laser radar at Lincoln Laboratory,” Lincoln Lab. J. 12, 383–396 (2000).
  12. D. E. Mosley, C. L. Matson, S. R. Czyzak, “Active imaging of space objects using the HI-CLASS (high performance CO2 ladar surveillance sensor) laser system,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 52–60 (1997). [CrossRef]
  13. T. J. Green, S. Marcus, B. D. Colella, “Synthetic-aperture-radar imaging with a solid-state laser,” Appl. Opt. 34, 6941–6949 (1995). [CrossRef] [PubMed]
  14. S. Yoshikado, T. Aruga, “Short-range verification experiment of a trial one-dimensional synthetic aperture infrared laser radar operated in the 10 µm band,” Appl. Opt. 39, 1421–1425 (2000). [CrossRef]
  15. M. Bashkansky, R. L. Lucke, E. Funk, L. J. Rickard, J. Reintjes, “Two-dimensional synthetic aperture imaging in the optical domain,” Opt. Lett. 27, 1983–1985 (2002). [CrossRef]
  16. D. E. Wahl, P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, “Phase gradient autofocus—a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst. 30, 827–835 (1994). [CrossRef]
  17. C. V. Jakowatz, D. E. Wahl, “Eigenvector method for maximum-likelihood estimation of phase errors in synthetic-aperture radar imagery,” J. Opt. Soc. Am. A 10, 2539–2546 (1993). [CrossRef]
  18. C. V. Jakowatz, P. A. Thompson, “A new look at spot-light mode synthetic aperture radar as tomography: imaging 3-D targets,” IEEE Trans. Image Process. 4, 699–703 (1995). [CrossRef]
  19. W. Buell, N. Marechal, J. Buck, R. Dickinson, D. Kozlowski, T. Wright, S. Beck, “Demonstrations of synthetic aperture imaging ladar,” in Defense and Security Symposium 2004, Proc. SPIE 5791, 152–166 (2005).
  20. R. A. Muller, A. Buffmgton, “Real-time correction of atmospherically degraded telescope image through image sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974). [CrossRef]
  21. T. Karr, “Resolution of synthetic aperture imaging through turbulence,” J. Opt. Soc. Am. A. 20, 1067–1083 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited