OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 36 — Dec. 20, 2005
  • pp: 7722–7729

Signal-to-noise ratio study of full-field Fourier-domain optical coherence tomography

Paul Blazkiewicz, Malcolm Gourlay, John R. Tucker, Aleksandar D. Rakic, and Andrei V. Zvyagin  »View Author Affiliations


Applied Optics, Vol. 44, Issue 36, pp. 7722-7729 (2005)
http://dx.doi.org/10.1364/AO.44.007722


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a new approach in optical coherence tomography (OCT) called full-field Fourier-domain OCT (3F-OCT). A three-dimensional image of a sample is obtained by digital reconstruction of a three-dimensional data cube, acquired with a Fourier holography recording system, illuminated with a swept source. We present a theoretical and experimental study of the signal-to-noise ratio of the 3F-OCT approach versus serial image acquisition (flying-spot OCT) approach.

© 2005 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(110.4280) Imaging systems : Noise in imaging systems
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

History
Original Manuscript: March 31, 2005
Revised Manuscript: July 10, 2005
Manuscript Accepted: July 11, 2005
Published: December 20, 2005

Virtual Issues
Vol. 1, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Paul Blazkiewicz, Malcolm Gourlay, John R. Tucker, Aleksandar D. Rakic, and Andrei V. Zvyagin, "Signal-to-noise ratio study of full-field Fourier-domain optical coherence tomography," Appl. Opt. 44, 7722-7729 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-36-7722


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002), p. 26
  3. M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999). [CrossRef]
  4. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–903 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-899 . [CrossRef]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003). [CrossRef] [PubMed]
  6. M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izzat, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Exp. 11, 2183–2189 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183 [CrossRef]
  7. A. V. Zvyagin, “Fourier-domain optical coherence tomography: Optimization of signal-to-noise ratio in full space,” Opt. Commun. 242, 97–108 (2004). [CrossRef]
  8. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998). [CrossRef]
  9. S. Bourquin, P. Seitz, R. P. Salathe, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001). [CrossRef]
  10. M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Exp. 10, 429–435 (2002). [CrossRef]
  11. E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  12. E. Arons, D. Dilworth, “Analysis of Fourier synthesis holography for imaging through scattering materials,” Appl. Opt. 34, 1841–1847 (1995). [CrossRef] [PubMed]
  13. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Exp. 11, 2953–2963 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953 [CrossRef]
  14. R. N. Bracewell, Fourier Transform and Its Applications (McGraw-Hill, 1978), Chap.18.
  15. American National Standards Institute, “Safe use of lasers,” ANSI Z136.1-2000 (Laser Institute of America, 2000).
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367 [CrossRef]
  17. A. B. Vakhtin, K. A. Peterson, W. R. Wood, D. J. Kane, “Differential spectral interferometry: An imaging technique for biomedical applications,” Opt. Lett. 28, 1332–1334 (2003). [CrossRef] [PubMed]
  18. K. Y. T. Seet, P. Blazkiewicz, P. Meredith, A. V. Zvyagin, “Optical scatter imaging using digital Fourier microscopy,” J. Phys. D (to be published).
  19. N. N. Boustany, S. C. Kuo, N. V. Thakor, “Optical scatter imaging: Subcellular morphometry in situ with Fourier filtering,” Opt. Lett. 26, 1063–1065 (2001). [CrossRef]
  20. W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005). [CrossRef]
  21. S. H. Yun, G. J. Tearney, J. F. de Boer, B. E. Bouma “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2997–2998 (2004).
  22. L. Vabre, A. Dubois, A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2003). [CrossRef]
  23. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29, 736–738 (2004). [CrossRef] [PubMed]
  24. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992). [CrossRef]
  25. A. V. Zvyagin, P. Blazkiewicz, J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited