OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 36 — Dec. 20, 2005
  • pp: 7730–7734

Polymer-based flexible microlens arrays with hermaphroditic focusing properties

Hongwen Ren and Shin-Tson Wu  »View Author Affiliations


Applied Optics, Vol. 44, Issue 36, pp. 7730-7734 (2005)
http://dx.doi.org/10.1364/AO.44.007730


View Full Text Article

Enhanced HTML    Acrobat PDF (672 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polymer microlens arrays with hermaphroditic focusing behaviors are demonstrated. Each microlens in an arrays exhibits either converging or diverging focus, depending on the polarization direction of the incident light. A polymer film with patterned microlens arrays is flexible, lightweight, and ultrathin (∼50 µm). Details of the lens structure, device fabrication, and lens performance are described.

© 2005 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(220.3620) Optical design and fabrication : Lens system design
(230.0230) Optical devices : Optical devices
(350.3950) Other areas of optics : Micro-optics

History
Original Manuscript: March 29, 2005
Revised Manuscript: August 22, 2005
Manuscript Accepted: August 25, 2005
Published: December 20, 2005

Citation
Hongwen Ren and Shin-Tson Wu, "Polymer-based flexible microlens arrays with hermaphroditic focusing properties," Appl. Opt. 44, 7730-7734 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-36-7730


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fritze, M. B. Stern, P. W. Wyatt, “Laser-fabricated glass microlens arrays,” Opt. Lett. 23, 141–143 (1998). [CrossRef]
  2. T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, H. Sato, “Ultraviolet-cured polymer microlens arrays,” Appl. Opt. 38, 2991–2996 (1999). [CrossRef]
  3. N. Chronis, G. L. Liu, K. Jeong, L. P. Lee, “Tunable liquid-filled microlens arrays integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003). [CrossRef] [PubMed]
  4. J. Chen, W. Wang, J. Fang, K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004). [CrossRef]
  5. T. Krupenkin, S. Yang, P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003). [CrossRef]
  6. S. Kuiper, B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  7. N. A. Riza, M. C. DeJule, “Three-terminal adaptive nematic liquid crystal lens device,” Opt. Lett. 19, 1013–1015 (1994). [CrossRef] [PubMed]
  8. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22, 351–353 (1997). [CrossRef] [PubMed]
  9. L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000). [CrossRef]
  10. Y. Choi, J. H. Park, J. H. Kim, S. D. Lee. “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002). [CrossRef]
  11. H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003). [CrossRef]
  12. X. Wang, H. Dai, K. Xu, “Tunable reflective lens array based on liquid crystal on silicon,” Opt. Express 13, 352–357 (2005). [CrossRef] [PubMed]
  13. H. Ren, Y. H. Fan, Y. H. Lin, S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106 (2005). [CrossRef]
  14. H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30, 376–378 (2005). [CrossRef] [PubMed]
  15. Y. Kim, J. H. Park, H. Choi, S. Jung, S. W. Min, B. Lee, “Viewing-angle-enhancement integral imaging system using a curved lens arrays,” Opt. Express 12, 421–429 (2004). [CrossRef] [PubMed]
  16. J. Arai, F. Okano, H. Isono, I. Yuyama, “Gradient-index lens arrays method based on real time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998). [CrossRef]
  17. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited