OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 36 — Dec. 20, 2005
  • pp: 7735–7743

High-temperature stability multilayers for extreme-ultraviolet condenser optics

Saša Bajt and Daniel G. Stearns  »View Author Affiliations


Applied Optics, Vol. 44, Issue 36, pp. 7735-7743 (2005)
http://dx.doi.org/10.1364/AO.44.007735


View Full Text Article

Enhanced HTML    Acrobat PDF (1121 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the thermal stability of Mo/SiC multilayer coatings at elevated temperatures. Transmission electron microscopy and x-ray diffraction studies show that, upon annealing, a thermally induced structural relaxation occurs that transforms the polycrystalline Mo and amorphous SiC layers in as-deposited multilayers into an amorphous Mo-Si-C alloy and crystalline SiC, respectively. After this relaxation process is complete, the multilayer is stable at temperatures up to 400 °C.

© 2005 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(310.0310) Thin films : Thin films
(340.7470) X-ray optics : X-ray mirrors

History
Original Manuscript: May 13, 2005
Manuscript Accepted: August 23, 2005
Published: December 20, 2005

Citation
Saša Bajt and Daniel G. Stearns, "High-temperature stability multilayers for extreme-ultraviolet condenser optics," Appl. Opt. 44, 7735-7743 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-36-7735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996). [CrossRef]
  2. S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002). [CrossRef]
  3. Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989). [CrossRef]
  4. A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991). [CrossRef]
  5. R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992). [CrossRef]
  6. Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992). [CrossRef]
  7. R. S. Rosen, D. G. Stearns, M. A. Villiardos, M. E. Kassner, S. P. Vernon, Y. Cheng, “Silicide layer growth rates in Mo/Si multilayers,” Appl. Opt. 32, 6975–6980 (1993). [CrossRef] [PubMed]
  8. V. V. Kontradenko, Yu. P. Pershin, O. V. Poltseva, A. I. Fedorenko, E. N. Zubarev, S. A. Yulin, I. V. Kozhevnikov, S. I. Saitov, V. A. Chirkov, V. E. Levashov, A. V. Vinogradov, “Thermal stability of soft x-ray Mo-Si and MoSi2-Si multilayer mirrors,” Appl. Opt. 32, 1811–1816 (1993). [CrossRef]
  9. H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993). [CrossRef]
  10. J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996). [CrossRef]
  11. E. Ziegler, “Multilayers for high heat load synchrotron applications,” Opt. Eng. 34, 445–452 (1995). [CrossRef]
  12. H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998). [CrossRef]
  13. D. L. Windt, “Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films,” J. Vac. Sci. Technol. A 18, 980–991 (2000). [CrossRef]
  14. C. Montcalm, “Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments,” Opt. Eng. 40, 469–477 (2001). [CrossRef]
  15. T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001). [CrossRef]
  16. T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002). [CrossRef]
  17. T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003). [CrossRef]
  18. D. L. Windt, S. Donguy, J. Seely, B. Kjomrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43, 1835–1848 (2004). [CrossRef] [PubMed]
  19. T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003). [CrossRef]
  20. H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998). [CrossRef]
  21. S. Bajt, “High-reflectance interface-engineered multilayers,” invited talk at Physics of X-Ray Multilayer Structures, Chamonix, France, 3–7 March 2002, http://cletus.phys.columbia.edu/pxrms/archives/pxrms02/index.html .
  22. S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002). [CrossRef]
  23. A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004). [CrossRef]
  24. M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003). [CrossRef]
  25. D. L. Windt, “IMD software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998). [CrossRef]
  26. See“X-ray interactions with matter” at http://www.cxro.lbl.gov/opticalconstants/ , managed by E. M. Gullikson.
  27. J. H. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993). [CrossRef] [PubMed]
  28. J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998). [CrossRef]
  29. S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998). [CrossRef]
  30. X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000). [CrossRef]
  31. U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982). [CrossRef]
  32. W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, 1945), p. 102.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited