OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 36 — Dec. 20, 2005
  • pp: 7764–7772

Radiative transfer code SHARM for atmospheric and terrestrial applications

A. I. Lyapustin  »View Author Affiliations


Applied Optics, Vol. 44, Issue 36, pp. 7764-7772 (2005)
http://dx.doi.org/10.1364/AO.44.007764


View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Delta-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.

© 2005 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(280.1310) Remote sensing and sensors : Atmospheric scattering

ToC Category:
Atmospheric and ocean optics

History
Original Manuscript: June 16, 2005
Revised Manuscript: August 4, 2005
Manuscript Accepted: August 5, 2005
Published: December 20, 2005

Citation
A. I. Lyapustin, "Radiative transfer code SHARM for atmospheric and terrestrial applications," Appl. Opt. 44, 7764-7772 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-36-7764


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B. C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003). [CrossRef]
  2. C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, J. T. Morisette, “An overview of MODIS land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002). [CrossRef]
  3. D. J. Diner, J. C. Beckert, T. H. Reily, C. J. Bruegge, J. E. Conel, R. A. Kahn, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, J.-P. Muller, R. B. Myneni, P. J. Sellers, B. Pinty, M. M. Verstraete, “Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview,” IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998). [CrossRef]
  4. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  5. K. Stamnes, S. C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  6. E. F. Vermote, D. Tanre, J. L. Deuze, M. Herman, J.-J. Mocrette, “Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997). [CrossRef]
  7. K. F. Evans, “The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429–446 (1998). [CrossRef]
  8. J. R. Key, “Streamer—User’s guide” (University of Wisconsin, Madison, 2002); available at http://stratus.ssec.wisc.edu/streamer/streamer.html .
  9. B. Mayer, A. Kylling, “Technical Note: The libRadtran software package for radiative transfer calculations: description and examples of use,” Atmos. Chem. Phys. 5. 1855–1877 (2005). [CrossRef]
  10. P. Ricchiazzi, S. Yang, C. Gautier, D. Sowle, “SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere,” Bull. Am. Meteor. Soc. 79, 2101–2114 (1998). [CrossRef]
  11. T. Z. Muldashev, A. I. Lyapustin, U. M. Sultangazin, “Spherical harmonics method in the problem of radiative transfer in the atmosphere-surface system,” J. Quant. Spectrosc. Radiat. Transfer 61, 393–404 (1998). [CrossRef]
  12. A. I. Lyapustin, T. Z. Muldashev, “Generalization of Marshak boundary condition for non-Lambert reflection,” J. Quant. Spectrosc. Radiat. Transfer 67, 457–464 (2000). [CrossRef]
  13. W. J. Wiscombe, “Delta-M method–rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1422 (1977). [CrossRef]
  14. W. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  15. A. Lyapustin, SHARM Manual (NASA GSFC, 2005); available at ftp://ltpftp.gsf.nasa.gov/projects/asrvn .
  16. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, S. A. Clough, “The MODTRAN 2/3 report and LOWTRAN 7 model,” (Ontar Corporation, North Andover, Mass., 1996).
  17. B. A. Bodhaine, N. B. Wood, E. G. Dutton, J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999). [CrossRef]
  18. H. Rahman, B. Pinty, M. M. Verstraete, “Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data,” J. Geophys. Res. 98, 20,791–20,801 (1993). [CrossRef]
  19. J. V. Martonchik, D. J. Diner, B. Pinty, M. M. Verstratete, R. B. Myneni, Yu. Knyazikhin, H. R. Gordon, “Determination of land and ocean reflective, radiative and biophysical properties using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1266–1281 (1998). [CrossRef]
  20. W. Lucht, C. B. Schaaf, A. H. Strahler, “An algorithm for the retrieval of albedo from space using semiempirical BRDF models,” IEEE Trans. Geosci. Remote Sens. 38, 977–998 (2000). [CrossRef]
  21. T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere–ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983). [CrossRef]
  22. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  23. A. Lyapustin, “Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study,” Appl. Opt. 41, 5607–5615 (2002). [CrossRef] [PubMed]
  24. C. K. Gatebe, M. D. King, A. I. Lyapustin, G. T. Arnold, J. Redemann, “Airborne spectral measurements of ocean directional reflectance,” J. Atmos. Sci. 62, 1072–1092 (2005). [CrossRef]
  25. T. Nakajima, M. Tanaka, “Algorithm for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988). [CrossRef]
  26. A. Lyapustin, “Interpolation and profile correction (IPC) method for shortwave radiative transfer in spectral intervals of gaseous absorption,” J. Atmos. Sci. 60, 865–871 (2003). [CrossRef]
  27. A. H. Karp, J. Greenstadt, J. A. Fillmore, “Radiative transfer through an arbitriarily thick, scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 24, 391–406 (1980). [CrossRef]
  28. J. V. Dave, “A direct solution of the spherical harmonics approximation to the radiative transfer equation for an arbitriary solar elevation,” J. Atmos. Sci. 32, 790–798 (1975). [CrossRef]
  29. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  30. A. Lyapustin, Y. Wang, J. Martonchik, J. Privette, B. Holben, I. Slutsker, A. Sinyuk, A. Smirnov, “Local analysis of MISR surface BRF and albedo over GSFC and Mongu AERO-NET sites,” IEEE Trans. Geosci. Remote Sens. (to be published).
  31. F. Gao, X. Li, A. Strahler, C. Schaaf, “Evaluation of the Li transit kernel for BRF modeling,” Remote Sens. Rev. 19, 205–224 (2000). [CrossRef]
  32. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  33. H. R. Gordon, M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I. The Rayleigh-scattering component,” Appl. Opt. 31, 4247–4260 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited