OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 36 — Dec. 20, 2005
  • pp: 7810–7813

Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser

Yong Ho Cha, Yong Woo Lee, Kwang-Hoon Ko, Euo Chang Jung, Gwon Lim, Jaewoo Kim, Taek-Soo Kim, and Do-Young Jeong  »View Author Affiliations


Applied Optics, Vol. 44, Issue 36, pp. 7810-7813 (2005)
http://dx.doi.org/10.1364/AO.44.007810


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a 756 nm, 3 W single-frequency cw Ti:sapphire laser by using the technique of injection locking. A cw Ti:sapphire laser in a ring-type configuration was forced to lase unidirectionally by use of an optical diode to prevent a high-power backward laser from disturbing the injection laser. A master laser was amplified by a broad-area laser diode and coupled into a single-mode fiber to generate a 50 mW injection laser with a Gaussian beam profile, which was enough to lock the Ti:sapphire laser at full power of 3 W. Such a high-power single-frequency Ti:sapphire laser enables a watt-level blue or near-ultraviolet single-frequency laser to be generated by frequency doubling.

© 2005 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.3560) Lasers and laser optics : Lasers, ring
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3590) Lasers and laser optics : Lasers, titanium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 22, 2005
Revised Manuscript: July 20, 2005
Manuscript Accepted: July 21, 2005
Published: December 20, 2005

Citation
Yong Ho Cha, Yong Woo Lee, Kwang-Hoon Ko, Euo Chang Jung, Gwon Lim, Jaewoo Kim, Taek-Soo Kim, and Do-Young Jeong, "Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser," Appl. Opt. 44, 7810-7813 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-36-7810


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Wilson, J. C. Sharpe, C. R. McKenzie, P. J. Manson, D. M. Warrington, “Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier,” Appl. Opt. 37, 4871–4875 (1998). [CrossRef]
  2. G. Ferrari, M. O. Mewes, F. Schreck, C. Salomon, “High-power multiple-frequency narrow-linewidth laser source based on a semiconductor tapered amplifier,” Opt. Lett. 24, 151–153 (1999). [CrossRef]
  3. G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J Quantum Electron. 24, 609–617 (1988). [CrossRef]
  4. E. Gehrig, B. Beier, K. J. Boller, R. Wallenstein, “Experimental characterization and numerical modelling of an Al-GaAs oscillator broad area double pass amplifier,” Appl. Phys. B 66, 287–293 (1998). [CrossRef]
  5. I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose–Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000). [CrossRef]
  6. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  7. A. Ashkin, G. D. Boyd, J. M. Dziendzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966). [CrossRef]
  8. C. S. Adams, A. I. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium tri-borate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992). [CrossRef]
  9. S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, “Efficient frequency doubling of a continuous wave titanium sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993). [CrossRef]
  10. E. Jurdik, J. Hohlfeld, A. F. van Etteger, A. J. Toonen, W. L. Meerts, H. van Kempen, Th. Rasing, “Performance optimization of an external enhancement resonator for optical second-harmonic generation,” J. Opt. Soc. Am. B 19, 1660–1667 (2002). [CrossRef]
  11. A. Siegman, Lasers (University Science, 1986).
  12. C. N. Man, A. Brillet, “Injection locking of argon-ion lasers,” Opt. Lett. 9, 333–334 (1984). [CrossRef] [PubMed]
  13. B. Couillaud, A. Ducasse, E. Freysz, L. Sarger, “Experimental study of the injection-locked continuous-wave ring dye laser,” Opt. Lett. 9, 435–437 (1984). [CrossRef] [PubMed]
  14. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a 13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989). [CrossRef] [PubMed]
  15. E. A. Cummings, M. S. Hicken, S. D. Bergeson, “Demonstration of a 1-W injection-locked continuous-wave titanium: sapphire laser,” Appl. Opt. 41, 7583–7587 (2002). [CrossRef]
  16. P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phy. Rev. Lett. 74, 2658–2661 (1995). [CrossRef]
  17. A. Owunwanne, M. Patel, S. Sadek, Handbook of Radiopharmaceuticals (Chapman & Hall, 1995).
  18. P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988). [CrossRef]
  19. R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited