OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 4 — Feb. 1, 2005
  • pp: 538–545

Improvement to human-face recognition in a volume holographic correlator by use of speckle modulation

Liangcai Cao, Qingsheng He, Chuan Ouyang, Yi Liao, and Guofan Jin  »View Author Affiliations


Applied Optics, Vol. 44, Issue 4, pp. 538-545 (2005)
http://dx.doi.org/10.1364/AO.44.000538


View Full Text Article

Enhanced HTML    Acrobat PDF (415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that a speckle-modulation technique can improve the parallelism and the recognition accuracy of volume holographic correlators. The object patterns are modulated by a speckle pattern generated by a diffuser. These modulated patterns are stored as Fourier holograms by use of angular-fractal multiplexing. With the speckle modulation the sidelobes are completely suppressed, the cross talk is negligible, and the correlation peak becomes a bright sharp spot. Thus higher recognition accuracy is achieved. The angular separation between adjacent patterns in the multiplexing could be much smaller, resulting in larger capacity and higher parallelism of the correlator. Also, this technique can be combined with other methods such as wavelet filtering to achieve a large invariant tolerance range. Theoretical analysis, numerical evaluation, and experimental results are presented to confirm that sidelobes and cross talk are sharply suppressed by the speckle modulation.

© 2005 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(090.7330) Holography : Volume gratings
(100.4550) Image processing : Correlators

History
Original Manuscript: May 6, 2004
Revised Manuscript: October 6, 2004
Manuscript Accepted: October 13, 2004
Published: February 1, 2005

Citation
Liangcai Cao, Qingsheng He, Chuan Ouyang, Yi Liao, and Guofan Jin, "Improvement to human-face recognition in a volume holographic correlator by use of speckle modulation," Appl. Opt. 44, 538-545 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-4-538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. O. White, A. Yariv, “Real-time pattern processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980). [CrossRef]
  2. H.-Y. S. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993). [CrossRef] [PubMed]
  3. C. Gu, H. Fu, J.-R. Lien, “Correlation patterns and crosstalk noise in volume holographic optical correlators,” J. Opt. Soc. Am. A 12, 861–868 (1995). [CrossRef]
  4. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).
  5. S. H. Shin, B. Javidi, “Three-dimensional object recognition by use of a photorefractive volume holographic processor,” Opt. Lett. 26, 1161–1163 (2001). [CrossRef]
  6. T. H. Chao, H. Y. Zhou, G. Reyes, “High-speed optical object recognition processor with massive holographic memory,” in Optical Information Processing Technology, M. Guoguang, F. T. Yu, S. Jutamulia, eds., Proc. SPIE4929, 237–243 (2002). [CrossRef]
  7. W. Su, Y. Chen, Y. Ouyang, C. Sun, B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117–123 (2003). [CrossRef]
  8. C. Gu, “Holographic memory for high density data storage and high speed pattern recognition,” in Optical Information Processing Technology, M. Guoguang, F. T. S. Yu, S. Jutamulia, eds., Proc. SPIE4929, 198–207 (2002). [CrossRef]
  9. P. A. Mitkas, G. W. Burr, “Volume holographic optical correlators,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sicebox, eds. (Springer-Verlag, Berlin, 2000), pp. 429–446. [CrossRef]
  10. W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Volume holographic wavelet correlation processor,” Opt. Eng. 39, 2444–2450 (2000). [CrossRef]
  11. W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141–148 (2000). [CrossRef]
  12. C. B. Uurckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970). [CrossRef]
  13. Q. Gao, R. K. Kostuk, “Improvement to holographic datastorage systems with random and pseudorandom phase masks,” Appl. Opt. 36, 4853–4861 (1997). [CrossRef] [PubMed]
  14. J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998). [CrossRef]
  15. P. Refregier, B. Javidi, “Optical-pattern encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef] [PubMed]
  16. B. Javidi, A. Sergent, E. Ahouzi, “Performance of double phase encoding encryption technique using binarized encrypted patterns,” Opt. Eng. 37, 565–569 (1998). [CrossRef]
  17. C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000). [CrossRef]
  18. B. Wang, C. C. Sun, “Enhancement of signal-to-noise ratio of a double random phase encoding encryption system,” Opt. Eng. 40, 1502–1506 (2001). [CrossRef]
  19. C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003). [CrossRef] [PubMed]
  20. J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–76.
  21. C. Gu, J. Hong, S. Campbell, “2-D shift-invariant volume holographic correlator,” Opt. Commun. 88, 309–314 (1992). [CrossRef]
  22. Q. He, P. Yeh, L. Hu, S. Lin, T. Yeh, T. Tu, S. Yang, K. Hsu, “Shift invariant photorefractive joint transform correlator using Fe:LiNbO3 crystal plates,” Appl. Opt. 32, 3113–3115 (1993). [CrossRef] [PubMed]
  23. Z. Wen, X. Yang, “Multichannel photorefractive correlator for rotation-invariant optical pattern recognition,” Opt. Commun. 135, 212–216 (1997). [CrossRef]
  24. C. Chang, H. Yau, Y. Tong, N. Puh, “Rotational invariant pattern recognition with the method of circular harmonics using a BaTiO3 crystal,” Opt. Commun. 87, 219–222 (1992). [CrossRef]
  25. J. Rodolfo, H. Rajbenbach, J.-P. Huignard, “Performance of a photorefractive joint transform correlator for fingerprint identification,” Opt. Eng. 34, 1166–1171 (1995). [CrossRef]
  26. C.-C. Sun, W.-C. Su, “Three-dimensional shifting selectivity phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001). [CrossRef]
  27. W.-C. Su, C.-C. Sun, “Optical pattern interconnections using random phase encoding in volume holograms,” Opt. Commun. 213, 259–265 (2002). [CrossRef]
  28. Q. He, G. Liu, X. Li, J. Wang, M. Wu, G. Jin, “Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002). [CrossRef] [PubMed]
  29. G. Jin, L. Cao, Q. He, H. Wei, M. Wu, “Random modulation in high density holographic data storage and correlation recognition system,” in Photorefractive Fiber and Crystal Deveices: Materials, Optical Properties, and Applications, F. T. S. Yu, R. Guo, S. Yin, eds., Proc. SPIE5206, 125–134 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited