OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 4 — Feb. 1, 2005
  • pp: 582–590

Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system

Martin Ostermeyer, Philip Kappe, Ralf Menzel, and Volker Wulfmeyer  »View Author Affiliations


Applied Optics, Vol. 44, Issue 4, pp. 582-590 (2005)
http://dx.doi.org/10.1364/AO.44.000582


View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A pulsed, diode-laser-pumped Nd:YAG master oscillator power amplifier (MOPA) in rod geometry, frequency stabilized with a modified Pound–Drever–Hall scheme is presented. The apparatus delivers 33-ns pulses with a maximum pulse energy of 0.5 J at 1064 nm. The system was set up in two different configurations for repetition rates of 100 or 250 Hz. The beam quality was measured to be 1.5 times the diffraction limit at a pulse energy of 405 mJ and a repetition rate of 100 Hz. At 250 Hz with the same pulse energy, the M2 was better than 2.1. The radiation is frequency converted with an efficiency of 50% to 532 nm. This MOPA system will be the pump laser of transmitters for a variety of high-end, scanning lidar systems.

© 2005 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3580) Lasers and laser optics : Lasers, solid-state

History
Original Manuscript: March 29, 2004
Revised Manuscript: August 4, 2004
Manuscript Accepted: September 22, 2004
Published: February 1, 2005

Citation
Martin Ostermeyer, Philip Kappe, Ralf Menzel, and Volker Wulfmeyer, "Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system," Appl. Opt. 44, 582-590 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-4-582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Christensen, O. B. Christensen, “Severe summertime flooding in Europe,” Nature (London) 421, 805–806 (2002). [CrossRef]
  2. K. Emanuel, E. Kalnay, C. Bishop, R. Elsberry, R. Gelaro, D. Keyser, S. Lord, D. Rogers, M. Shapiro, C. Snyder, C. Velden, “Observations in aid of weather prediction: report of Prospectus Development Team Seven,” Bull. Am. Meteorol. Soc. 78, 2859–2868 (1997).
  3. N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124, 1767–1785 (1996). [CrossRef]
  4. T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR/NOAA lower tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999). [CrossRef]
  5. T. M. Weckwerth, “The effect of small-scale moisture variability on thunderstorm initiation,” Mon. Weather Rev. 128, 4017–4030 (2000). [CrossRef]
  6. European Space Agency, “Report for Assessment. WALES—Water Vapour Lidar Experiment in Space. The Five Candidate Earth Explorer Core Mission,” (European Space Agency, Paris, 2001).
  7. E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, New York, 1997), pp. 289–295. [CrossRef]
  8. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: requirements, development, and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998). [CrossRef]
  9. G. Ehret, A. Fix, V. Weiß, G. Poberaj, T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998). [CrossRef]
  10. G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31351–31359 (1999). [CrossRef]
  11. A. M. Dabas, P. Drobinski, O. Reitebuch, E. Richard, P. Delville, P. H. Flamant, Ch. Werner, “Multi-scale analysis of a straight jet streak using numerical analyses and an airborne Doppler lidar,” Geophys. Res. Lett. 1, 1–4 (2001).
  12. E. V. Browell, S. Ismail, R. A. Ferrare, S. A. Kooi, A. Notari, C. F. Butler, V. G. Brackett, H. E. Revercomb, P. Antonelli, “Airborne remote measurements of water vapor, relative humidity, aerosol, and cloud distributions during the IHOP field experiment,” in Proceedings of the Sixth International Symposium on Tropospheric Profiling, U. Wandinger, R. Engelman, K. Schneider, eds. (American Meteorological Society, Boston, Mass., 2003), pp. 384–386.
  13. C. Flamant, S. Koch, T. Weckwerth, J. Wilson, D. Parsons, B. Demoz, B. Gentry, D. Whiteman, G. Schwemmer, F. Fabry, W. Feltz, M. Pagowski, P. Di Girolamo, “The life cycle of a bore event over the US Southern Great Plains during IHOP 2002,” in Proceedings of the Sixth International Symposium on Tropospheric Profiling, U. Wandinger, R. Engelman, K. Schneider, eds. (American Meteorological Society, Boston, Mass., 2003), pp. 375–377.
  14. V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Graßl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, U. Wandinger, “Workshop report lidar research network water vapor and wind,” Meteorol. Z. 12, 5–24 (2003). [CrossRef]
  15. V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, U. Wandinger, “Reports for Mission Selection. The Four Candidate Earth Explorer Core Missions. Atmospheric Dynamics Mission,” . (European Space Agency, Paris, 1999).
  16. R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, R. Senn, “Diode array pumped kilowatt laser,” IEEE J. Sel. Top. Quantum Electron. 3, 53–58 (1997). [CrossRef]
  17. K. Tei, M. Kato, Y. Niwa, Y. Maruyama, T. Matoba, T. Arisawa, “High repetition rate 1-J green laser system,” Appl. Opt. 38, 4548–4551 (1999). [CrossRef]
  18. S. Konno, F. Shuichi, K. Yasui, “80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser,” Appl. Phys. Lett. 70, 2650–2651 (1997). [CrossRef]
  19. J. J. Kasinski, R. Burnham, “Near-diffraction-limited, high-energy, high-power, diode-pumped laser using thermal aberration correction with aspheric diamond turned optics,” Appl. Opt. 35, 5949–5954 (1996). [CrossRef] [PubMed]
  20. H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, M. Nakatsuka, “360-W average power operation with single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate,” Opt. Lett. 28, 1671–1673 (2003). [CrossRef] [PubMed]
  21. D. B. Coyle, R. B. Kay, J. J. Degnan, D. J. Krebs, “Injection seeded diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging,” Meas. Sci. Technol. 5, 136–143 (1994). [CrossRef]
  22. R. L. Schmitt, L. A. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25, 629–633 (1986). [CrossRef] [PubMed]
  23. G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, S. Geiger, Q. Lü, “High peak and high average power all-solid-state laser systems for airborne LIDAR applications,” LaserOpto 32, 29–37 (2000).
  24. M. Ostermeyer, G. Klemz, P. Kubina, R. Menzel, “Quasi-continuous-wave birefringence-compensated single- and double-rod Nd:YAG lasers,” Appl. Opt. 41, 7573–7582 (2002). [CrossRef]
  25. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  26. V. Wulfmeyer, M. Randall, “2-μm Doppler lidar transmitter with high frequency stability and low chirp,” Opt. Lett. 25, 1228–1230 (2000). [CrossRef]
  27. G. Anstett, A. Borsutzky, R. Wallenstein, “Investigation of the spatial beam quality of pulsed ns-OPOs,” Appl. Phys. B 76, 541–545 (2003). [CrossRef]
  28. D. Golla, M. Bode, S. Knoke, W. Schöne, A. Tünnermann, “62-W cw TEM00 Nd:YAG laser side-pumped by fiber-coupled diode lasers,” Opt. Lett. 21, 210–212 (1996). [CrossRef] [PubMed]
  29. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser rods,” Opt. Quantum Electron. 28, 57–69 (1996). [CrossRef]
  30. Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, T. Tajime, “208-W operation of a diode-pumped Nd:YAG rod laser,” Opt. Lett. 24, 679–681 (1999). [CrossRef]
  31. V. Wulfmeyer, C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001). [CrossRef]
  32. B. Dane, “Laser resonators with Brillouin mirrors,” in Phase Conjugate Laser Optics, A. Brignon, J.-P. Huignard, eds. (Wiley-Interscience, New York, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited