OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 4 — Feb. 1, 2005
  • pp: 611–619

Quantitative absorption spectroscopy of residual water vapor in high-purity gases: pressure broadening of the 1.39253-μm H2O transition by N2, HCl, HBr, Cl2, and O2

Vasil Vorsa, Seksan Dheandhanoo, Suhas N. Ketkar, and Joseph T. Hodges  »View Author Affiliations


Applied Optics, Vol. 44, Issue 4, pp. 611-619 (2005)
http://dx.doi.org/10.1364/AO.44.000611


View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We determined the respective pressure-broadening coefficients of HCl, HBr, Cl2, and O2 (expressed relative to that of the reference gas N2) for the (ν123)JKa,Kc = (0,0,0)30,3 → (1,0,1)20,2 rovibrational transition of H216O that occurs at 1.39253 μm. The experiment used a continuous-wave cavity ring-down spectroscopy analyzer to measure the peak absorption losses as a function of added moisture concentration. The measured pressure-broadening coefficients for HCl, HBr, Cl2, and O2 are, respectively, 2.76, 2.48, 1.39, and 0.49 times that of the N2 pressure-broadening coefficient, and detection limits for water vapor range from 0.22 nmol mol−1 for O2 matrix gas to 2.3 nmol mol−1 for HBr matrix gas. The degradation of the detection limit (relative to the N2 matrix gas) is ascribed to a pressure-broadening-induced reduction in peak absorption cross section and to elevated background loss from the matrix gas.

© 2005 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption

History
Original Manuscript: May 13, 2004
Revised Manuscript: August 23, 2004
Manuscript Accepted: August 25, 2004
Published: February 1, 2005

Citation
Vasil Vorsa, Seksan Dheandhanoo, Suhas N. Ketkar, and Joseph T. Hodges, "Quantitative absorption spectroscopy of residual water vapor in high-purity gases: pressure broadening of the 1.39253-μm H2O transition by N2, HCl, HBr, Cl2, and O2," Appl. Opt. 44, 611-619 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-4-611


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Sematech, Inc., The International Roadmap for Semiconductors, ITRS2003 Ed. 1–39 (Sematech, Austin, Tex., 2003), pp. 1–39; also available at http:33public.itrs.net .
  2. H. H. Funke, B. L. Grissom, C. E. McGrew, M. W. Raynor, “Techniques for the measurement of trace moisture in high-purity electronic specialty gases,” Rev. Sci. Instrum. 74, 3909–3933 (2003). [CrossRef]
  3. S. Y. Lehman, K. A. Bertness, J. T. Hodges, “Detection of trace water in phosphine with cavity ring-down spectroscopy,” J. of Cryst. Growth 250, 262–268 (2003). [CrossRef]
  4. D. D. Koleske, A. E. Wickenden, R. L. Henry, M. E. Twigg, “Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN,” J. Cryst. Growth 242, 55–69 (2002). [CrossRef]
  5. M. Gandouzi, J. C. Bourgoin, J. Mimila-Arroyo, Cl. Grattepain, Ch. Grattepain, “Impurity incorporation during epitaxial growth of GaAs by chemical reaction,” J. Cryst. Growth 218, 167–172 (2000). [CrossRef]
  6. H. Hardtdegen, R. Schmidt, K. Wirtz, A. Mueck, S. Guadagnuolo, G. Vergani, “On the suitability of getter-purified hydrogen for the LP-MOVPE of (AlGa)As: a comparison to Pd-diffused hydrogen,” J. Electron. Mater. 30, 1397–1401 (2001). [CrossRef]
  7. G. M. Mitchell, V. Vorsa, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefa, M. D. Wagner, S. N. Ketkar, T. M. Booth, T. E. Conway, “Trace impurity detection in ammonia for the semiconductor market,” Gases Technol. 2(4), 8–13 (2003).
  8. P. Rosenthal, M. L. Spartz, “Instrumentation for real-time trace impurity detection of bulk ammonia in production environments,” Gases Technol. 2(5), 8–12 (2003).
  9. W. Yan, “Parts-per-trillion moisture measurement using cavity ring-down spectroscopy,” Gases Technol. 1(4), 21–24 (2002).
  10. A. Wright, M. Lyons, C. Wood, “Description and performance of a tunable laser based absorption analyzer for sub-ppb moisture detection,” Presented at the SEMICON West 2002 Standards Workshop, San Francisco, Calif., 22–24 July 2002.
  11. R. S. Inman, J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994). [CrossRef]
  12. D. C. Hovde, J. T. Hodges, G. E. Scace, J. A. Silver, “Wavelength-modulation laser hygrometer for ultra-sensitive detection of water vapor in semiconductor gases,” Appl. Opt. 40, 829–839 (2001). [CrossRef]
  13. S. N. Ketkar, A. D. Scott, J. V. Martinez de Pinillos, “Dynamic dilution calibration system for calibrating analytical instruments used in gas analysis,” J. Electrochem. Soc. 141, 184–187 (1994). [CrossRef]
  14. Manufacturers and product names are listed solely for completeness. These specific citations neither constitute an endorsement of the products nor imply that similar products from other companies would be less suitable.
  15. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  16. S. Y. Lehman, K. A. Bertness, J. T. Hodges, “Optimal spectral region for real-time monitoring of sub-ppm levels of water in phosphine using cavity ring-down spectroscopy,” J. of Cryst. Growth 261, 225–230 (2004). [CrossRef]
  17. N. J. van Leeuwen, J. C. Diettrich, A. C. Wilson, “Periodically locked continuous-wave cavity ringdown spectroscopy,” Appl. Opt. 42, 3670–3677 (2003). [CrossRef] [PubMed]
  18. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowictz, K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599–4605 (2003). [CrossRef] [PubMed]
  19. J. T. Hodges, H. P. Layer, W. M. Miller, G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004). [CrossRef]
  20. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999). [CrossRef]
  21. P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef] [PubMed]
  22. M. Lepère, A. Henry, A. Valentin, C. Camy-Peret, “Diode-laser spectroscopy: line profiles of H2O in the region of 1.39 μm,” J. Mol. Spectrosc. 208, 25–31 (2001). [CrossRef]
  23. R. Gamache, J. M. Hartmann, “Collisional parameters of H2O lines: effects of vibration,” J. Quant. Spectrosc. Radiat. Transfer 83, 119–147 (2004). [CrossRef]
  24. R. Phelan, M. Lynch, J. F. Donegan, V. Weldon, “Absorption line shift with temperature and pressure: impact on laser-diode-based H2O sensing at 1.39 μm,” Appl. Opt. 42, 4968–4974 (2003). [CrossRef] [PubMed]
  25. R. R. Gamache, R. W. Davies, “Theoretical calculations of N2-broadened halfwidths of H2O using quantum Fourier transform theory,” Appl. Opt. 22, 4013–4019 (1983). [CrossRef]
  26. S. D. Gasster, C. H. Townes, D. Goorvitch, F. P. J. Valero, “Foreign-gas collision broadening of the far-infrared spectrum of water vapor,” J. Opt. Soc. Am. B 5, 593–601 (1988). [CrossRef]
  27. N. Verma, A. Athalye, D. Precourt, N. Anderson, in Proceedings of the 43rd Annual Meeting of the Institute of Environmental Sciences, Los Angeles, CA (Institute of Environmental Sciences, Mount Prospect, Ill., 1997), p. 351.
  28. C. Ma, A. Athalye, B. Fruhberger, E. Ezell, “Moisture dry-down in high purity hydrogen chloride,” in Proceedings of the 44th Annual Meeting of the Institute of Environmental Sciences, Phoenix, AZ (Institute of Environmental Sciences, Mount Prospect, Ill, 1998), pp. 285–293.
  29. R. R. Rudder, D. R. Bach, “Rayleigh scattering of ruby-laser light by neutral gases,” J. Opt. Soc. Am. 58, 1260–1266 (1968). [CrossRef]
  30. S. J. Davis, W. J. Kessler, M. Bachmann, “Collisional broadening of absorption lines in water vapor and atomic iodine relevant to COIL diagnostics,” in Gas and Chemical Lasers and Intense Beam Applications II, E. A. Dorko, ed., Proc. SPIE3612, 157–166 (1999). [CrossRef]
  31. M. T. do N. Varella, M. H. F. Bettega, M. A. P. Lima, L. G. Ferreira, “Low-energy electron scattering by H2O, H2S, H2Se and H2Te,” J. Chem. Phys. 111, 6396–6406 (1999). [CrossRef]
  32. G. Maroulis, “A systematic study of basis set, electron correlation, and geometry effects on the electric multipole moments, polarizability, and hyperpolarizability of HCl,” J. Chem. Phys. 108, 5432–5448 (1998). [CrossRef]
  33. O. B. Dabbousi, W. L. Meerts, F. H. De Leeuw, A. Dymanus, “Stark–Zeeman hyperfine structure of H 79Br and H 81Br by molecular-beam electric-resonance spectroscopy,” Chem. Phys. 2, 473–477 (1973). [CrossRef]
  34. P. T. Eubank, “The effective quadrupole moment of water,” J. Phys. Chem. 77, 2670–2671 (1973). [CrossRef]
  35. D. E. Stogryn, A. P. Stogryn, “Molecular multiple moments,” Mol. Phys. 11, 371–393 (1966). [CrossRef]
  36. G. Maroulis, “Electric quadrupole moment and quadrupole polarizability of hydrogen bromide,” J. Phys. B 26, 2957–2964 (1993). [CrossRef]
  37. G. Maroulis, “Electric properties of chlorine,” J. Mol. Struct.: THEOCHEM 98, 79–84 (1993). [CrossRef]
  38. J. S. Murphy, J. E. Boggs, “Collision broadening of rotational absorption lines. I. Theoretical formulation,” J. Chem. Phys. 47, 691–702 (1967). [CrossRef]
  39. G. Yamamoto, T. Aoki, “Line broadening theory of asymmetric-top molecule,” J. Quant. Spectrosc. Radiat. Transfer 12, 227–241 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited