OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 5 — Feb. 10, 2005
  • pp: 751–764

Accurate first-order leaky-wave analysis of antiresonant reflecting optical waveguides

Meng-Huei Sheng and Hung-Wen Chang  »View Author Affiliations


Applied Optics, Vol. 44, Issue 5, pp. 751-764 (2005)
http://dx.doi.org/10.1364/AO.44.000751


View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a closed-form approximation for estimating both the field distribution and complex propagating constant of the antiresonant reflecting optical waveguide (ARROW) based on a first-order leaky-mode analysis. The formula was obtained from a novel coupled-electric–coupled-magnetic matrix method and provides six significant figures of the real part of the propagation constant β of a SiO2/TiO2/SiO2/Si ARROW with an 8-μm core. The accuracy for the quantity of the imaginary part of β is greater than 98.4% for the TE0 mode and 99.3% for TM0. The approximate values for field components are 96.1% accurate. In addition, a slight absorption by the substrate will result in modification of the initial improper leaky-mode behavior, which grows exponentially in the substrate, yielding a proper solution.

© 2005 Optical Society of America

History
Original Manuscript: February 11, 2004
Revised Manuscript: June 28, 2004
Manuscript Accepted: October 11, 2004
Published: February 10, 2005

Citation
Meng-Huei Sheng and Hung-Wen Chang, "Accurate first-order leaky-wave analysis of antiresonant reflecting optical waveguides," Appl. Opt. 44, 751-764 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-5-751


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Duguay, Y. Kokubun, T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2–Si multiplayer structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  2. T. Sekimoto, S. Ikuta, W. Pan, S. T. Chu, Y. Kokubun, “Vertical antiresonant reflecting optical waveguide coupler for three-dimensional optical interconnects: optimum design for large tolerance, high coupling efficiency, and short coupling length,” Appl. Opt. 39, 426–430 (2000). [CrossRef]
  3. S. T. Chu, W. Pan, S. Sato, B. E. Little, T. Kaneko, Y. Kokubun, “ARROW-type vertical coupler filter: design and fabrication,” J. Lightwave Technol. 17, 652–658 (1999). [CrossRef]
  4. X. Borrise, D. Jimenez, F. Perez-Murano, A. Llobera, C. Dominguez, N. Barniol, “Characterization of antiresonant reflecting optical waveguide devices by scanning near-field optical microscopy,” J. Opt. Soc. Am. A 17, 2243–2248 (2000). [CrossRef]
  5. M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. Lopez-Amo, I. Moerman, P. Van Daele, R. G. Baets, “Mode-expanded 1.55 μm InP–InGaAsP Fabry–Perot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002). [CrossRef]
  6. R. Bernini, S. Campopiano, L. Zeni, “Design and analysis of an integrated antiresonant reflecting optical waveguide refractive-index sensor,” Appl. Opt. 41, 70–73 (2002). [CrossRef] [PubMed]
  7. F. Prieto, L. M. Lechuga, A. Calle, A. Llobera, C. Domínguez, “Optimized silicon antiresonant reflecting optical waveguides for sensing applications,” J. Lightwave Technol. 19, 75–83 (2001). [CrossRef]
  8. K. Benaissa, A. Nathan, “Silicon anti-resonant reflecting optical waveguides for sensor applications,” Sens. Actuators A 65, 33–44 (1998). [CrossRef]
  9. T. Hayakawa, S. Asakawa, Y. Kokubun, “ARROW-B type polarization splitter with Y-branch fabricated by a self-alignment process,” J. Lightwave Technol. 15, 1165–1170 (1997). [CrossRef]
  10. J. Chilwell, I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753 (1984). [CrossRef]
  11. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000). [CrossRef]
  12. T. Baba, Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992). [CrossRef]
  13. W. Huang, R. M. Shubair, A. Nathan, Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol. 10, 1015–1022 (1992). [CrossRef]
  14. J. M. Kubica, “Numerical analysis of InP/InGaAsP ARROW waveguides using transfer matrix approach,” J. Lightwave Technol. 10, 767–771 (1992). [CrossRef]
  15. J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum Electron. 30, 1250–1253 (1994). [CrossRef]
  16. B. Ray, G. W. Hanson, “Some effects of anisotropy on planar antiresonant reflecting optical waveguides,” J. Light-wave Technol. 14, 202–208 (1996). [CrossRef]
  17. I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996). [CrossRef]
  18. B. Liu, A. Shakouri, J. E. Bowers, “Characteristic equations for different ARROW structures,” Opt. Quantum Electron. 31, 1267–1276 (1999). [CrossRef]
  19. R. E. Collin, Field Theory of Guided Waves (Institute of Electrical and Electronics Engineering, New York, 1991), pp. 181–184.
  20. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, N.J., 1991), pp. 43–45.
  21. A. K. Chu, I. J. Lan, H. W. Chang, M. H. Sheng, “Low-loss polyimide/Ta2O5/SiO2hybrid antiresonant reflecting optical waveguides at quasi-antiresonant conditions,” IEEE Photon. Technol. Lett. 14, 44–46 (2002). [CrossRef]
  22. A. K. Chu, H. W. Chang, M. H. Sheng, “Optical polarizer based on antiresonant reflecting optical waveguide under quasi-antiresonant conditions,” Opt. Commun. 194, 137–142 (2001). [CrossRef]
  23. N.-J. You, “Application of coupled E/H formulation to the design of multiple layer AR-coating for large incident angle,” M.S. thesis (National Sun Yat-sen University, Institute of Electro-optical Engineering, Kaoshiung, Taiwan, 2000).
  24. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1983), pp. 482–489.
  25. S.-L. Lee, Y. Chung, L. A. Coldren, N. Dagli, “On leaky mode approximations for modal expansion in multilayer open waveguides,” IEEE J. Quantum Electron. 31, 1790–1802 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited