OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 5 — Feb. 10, 2005
  • pp: 800–807

High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser

Xiaoyuan Peng, Lei Xu, and Anand Asundi  »View Author Affiliations

Applied Optics, Vol. 44, Issue 5, pp. 800-807 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe experimental results with a diode-pumped, intracavity-doubled cw Nd:YLF laser in multilongitudinal mode and TEM00 spatial transverse mode with a critical phase-matched lithium triborate crystal. Taking into account the thermal effects of Nd:YLF, energy-transfer upconversion, and the thermal fracture limit, we set up a power-scaling model to optimize and design a fundamental diode-pumped Nd:YLF laser. A highly efficient second-harmonic laser was achieved, based on the optimized cavity design. A second-harmonic-generation output power of 20.5 W at a wavelength of 527 nm was obtained at an incident pump power of 60 W, corresponding to an optical-to-optical efficiency of 34.2%. The TEM00 mode green laser operates at a measured M2 parameter of 1.2. The instability of the green laser power is less than ±1% RMS.

© 2005 Optical Society of America

Original Manuscript: July 1, 2004
Revised Manuscript: October 12, 2004
Manuscript Accepted: October 13, 2004
Published: February 10, 2005

Xiaoyuan Peng, Lei Xu, and Anand Asundi, "High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser," Appl. Opt. 44, 800-807 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Baer, “Large amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3, 1175–1180 (1986). [CrossRef]
  2. T. Y. Fan, “Single-axial mode, intracavity doubled Nd:YAG laser,” IEEE J. Quantum Electron. 27, 2091–2093 (1991). [CrossRef]
  3. M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, D. K. Negus, “8.5 watts of single frequency 532-nm light from a diode pumped intracavity ring laser,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1966Optical Society of America, Washington, D.C., 1996), paper CPD21.
  4. D. Li, C. Zhu, V. Gaebler, B. Liu, H. J. Eichler, Z. Zhang, Y. Wang, Z. Li, J. Qiu, “Theoretical and experimental studies of noise suppression for intracavity frequency doubled lasers with phase matching type I or II,” Opt. Commun. 189, 357–364 (2001). [CrossRef]
  5. Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998). [CrossRef]
  6. V. Magni, G. Gerullo, S. D. Silverstri, O. Svelto, L. J. Qian, M. Danailov, “Intracavity frequency doubling of a cw high-power TEM00Nd:YLF laser,” Opt. Lett. 18, 2111–2113 (1993). [CrossRef]
  7. Y. Kitaoka, S. Ohmori, K. Yamamoto, M. Kato, T. Sasaki, “Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4lasers,” Appl. Phys. Lett. 63, 299–301 (1993). [CrossRef]
  8. W. Weichmann, L. Y. Liy, S. Kubota, “Efficient 1W single frequency cw green generation from an intracavity-doubled diode-pumped Nd:YVO4 laser,” in Advanced Solid State Lasers, B. H. T. Chai, S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 96–98.
  9. G. Feugnet, C. Busac, C. Larat, M. Schwarz, J. P. Pocholle, “High efficiency intracavity doubled diode-end-pumped Nd:YVO4laser,” in Solid State Lasers V, R. Scheps, ed., Proc. SPIE2698, 105–114 (1996). [CrossRef]
  10. W. L. Nighan, J. Cole, “6W of stable, 532 nm, TEM00output at 30% efficiency from an intracavity-doubled, diode-pumped multiaxial mode N:YVO4laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), paper PD4.
  11. J.-P. Meyn, G. Huber, “Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser,” Opt. Lett. 19, 1436–1438 (1994). [CrossRef] [PubMed]
  12. T. Kojima, S. Fujikawa, K. Yasui, “Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled cw Nd:YAG laser by compensating for thermal lensing of a KTP crystal and Nd:YAG rods,” IEEE J. Quantum Electron. 35, 377–380 (1999). [CrossRef]
  13. W. A. Clarkson, P. J. Hardman, D. C. Hanna, “High-power diode-bar end-pumped Nd:YLF laser at 1.053 μm,” Opt. Lett. 23, 1363–1365 (1998). [CrossRef]
  14. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D Appl. Phys. 34, 2381–2395 (2001). [CrossRef]
  15. L. Yan, C. H. Lee, “Thermal effects in end pumped Nd: phosphate glasses,” J. Appl. Phys. 75, 1286–1292 (1994). [CrossRef]
  16. X. Peng, A. Asundi, Y. Chen, Z. Xiong, “Combination study on mechanical properties of Nd:YVO4crystal with laser interferometry and finite-element analysis,” Appl. Opt. 40, 1396–1403 (2001). [CrossRef]
  17. X. Peng, L. Xu, A. Asundi, “Power scaling of diode-pumped Nd:YVO4lasers,” IEEE J. Quantum Electron.38, 1291–1299 (2002).
  18. VLOC catalog, (VLOC, New Port Richey, Fla., 1999), www.vloc.com .
  19. X. Peng, L. Xu, A. Asundi, “Compact broadband tunable short pulse high-repetition-rate optical parametric oscillator,” in Environmental Monitoring and Remediation III, V. Tuan, G. Gauglitz, R. A. Lieberman, K. Schaefer, K. Dennis, eds., Proc. SPIE5270, 214–222 (2003). [CrossRef]
  20. X. Peng, L. Xu, A. Asundi, “Highly efficient high-repetition-rate tunable all-solid-state optical parametric oscillator,” IEEE J. Quantum Electron. 41, 53–61 (2005). [CrossRef]
  21. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beam,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited