OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 5 — Feb. 10, 2005
  • pp: 808–816

Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser

Takuji Amano, Hideaki Hiro-Oka, DongHak Choi, Hiroyuki Furukawa, Fumiyoshi Kano, Mituo Takeda, Motoi Nakanishi, Kimiya Shimizu, and Kohji Ohbayashi  »View Author Affiliations


Applied Optics, Vol. 44, Issue 5, pp. 808-816 (2005)
http://dx.doi.org/10.1364/AO.44.000808


View Full Text Article

Enhanced HTML    Acrobat PDF (476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Superstructure-grating distributed Bragg reflector lasers are particularly suited for optical frequency-domain reflectometry optical-coherence tomography with wide wavelength tunability and frequency agility. We report theoretical estimates of and experimental results for the data acquisition speed, the observable depth range, the resolution, and the dynamic range of an optical frequency-domain reflectometry system that uses a superstructure-grating distributed Bragg reflector laser whose wavelength can be tuned from 1533 to 1574 nm with a tuning speed of 10 μs/0.1-nm step.

© 2005 Optical Society of America

History
Original Manuscript: February 16, 2004
Revised Manuscript: August 30, 2004
Manuscript Accepted: October 6, 2004
Published: February 10, 2005

Citation
Takuji Amano, Hideaki Hiro-Oka, DongHak Choi, Hiroyuki Furukawa, Fumiyoshi Kano, Mituo Takeda, Motoi Nakanishi, Kimiya Shimizu, and Kohji Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-5-808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003). [CrossRef] [PubMed]
  3. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11, 889–894 (2003), http://www.opticsexpress.org . [CrossRef]
  4. M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11, 2183–2189 (2003), http://www.opticsexpress.org . [CrossRef]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11, 2953–2963 (2003), http://www.opticsexpress.org . [CrossRef]
  6. S. H. Yun, C. Boudoux, G. H. Tearney, B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003). [CrossRef] [PubMed]
  7. C. K. Hitzenberger, A. F. Fercher, “Alternative OCT technique,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 359–383.
  8. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, “Optical frequency-domain imaging microprofilometry with a frequency-tunable liquid-crystal Fabry–Perot etalon device,” Appl. Opt. 38, 7063–7068 (1999). [CrossRef]
  9. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997). [CrossRef] [PubMed]
  10. H. Hiratsuka, E. Kifo, T. Yoshimura, “Simultaneous measurement of three-dimensional reflectivity distributions in scattering media based on optical frequency-domain reflectometry,” Opt. Lett. 23, 1420–1422 (1998). [CrossRef]
  11. A. W. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org . [CrossRef]
  12. B. Golubovic, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22, 1704–1706 (1997). [CrossRef]
  13. U. Haberland, P. Jansen, V. Blazek, H. Schmitt, “Optical coherence tomography of scattering media using frequency modulated continuous wave techniques with tunable near-infrared laser,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 20–28 (1997). [CrossRef]
  14. U. Haberland, V. Blazek, H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998). [CrossRef] [PubMed]
  15. C. K. Hitzenberger, M. Kulhavy, F. Lexer, A. Baumgartner, A. F. Fercher, “In vivo intraocular ranging by wavelength tuning interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 47–51 (1998). [CrossRef]
  16. Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993). [CrossRef]
  17. F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, Y. Yoshikuni, “Broad range wavelength switching in superstructured grating distributed Bragg reflector lasers,” Electron. Lett. 29, 1091–1092 (1993). [CrossRef]
  18. Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994). [CrossRef]
  19. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996). [CrossRef]
  20. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996). [CrossRef]
  21. H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998). [CrossRef]
  22. F. Kano, Y. Yoshikuni, H. Ishii, “Frequency control and stabilization of broadly tunable SSG-DBR lasers,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 538–540. [CrossRef]
  23. A. M. Rollins, J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999). [CrossRef]
  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988), Fig. 12.7.2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited